tokenpocket官方安卓下载app|区块链技术带来的价值包括

作者: tokenpocket官方安卓下载app
2024-03-10 23:02:47

区块链的好处 - IBM 区块链 | IBM

区块链的好处 - IBM 区块链 | IBM

区块链的优点

区块链可以提高整个业务网络中的数据信任度、安全性、透明度和可追溯性,并节省成本和提高效率。

建立信任并提高底线

业务区块链使用共享且不可篡改的账本,只有获得许可的成员才能访问该账本。 网络成员控制每个组织或成员可以看到哪些信息,以及每个组织或成员可以采取哪些行动。 区块链有时也被称为“无信任”网络 — 不是因为业务伙伴之间彼此不信任,而是因为 他们不必相互信任。

这种信任建立在区块链的增强安全性、更高的透明度和即时可追溯性基础之上的。 除信任问题外,区块链还能带来更多的商业利益,包括通过提高速度、效率和自动化来节省成本。 通过大大减少文书工作和错误,区块链显著降低了管理费用和交易成本,并减少或消除了第三方或中间人验证交易的需要。

深入研究:了解有关区块链技术的更多信息

区块链的五个重要好处

增强安全性

您的数据是敏感且关键的,区块链可以大大改变您查看关键信息的方式。 通过创建无法篡改且端到端加密的记录,区块链有助于防止欺诈和未经授权的活动。 隐私问题也可以在区块链上得以解决,解决方式包括匿名个人数据以及限制访问权限等。 信息存储在整个计算机网络上,而不是单个服务器上,这使得黑客很难查看数据。

深入研究:何为区块链安全性?

更大的透明度

如果没有区块链,每个组织都必须保留一个单独的数据库。 由于区块链使用分布式账本,导致交易和数据在多个位置采取完全相同的方式进行记录。 所有具有访问权限的网络参与者都能同时查看相同的信息,从而实现信息的完全透明性。 所有交易记录均不可篡改,并带有时间和日期戳。 这使成员能够查看交易的整个历史记录,并几乎消除了任何欺诈机会。

即时可追溯性

区块链创建了审计追溯机制,用于记录每一步旅程中的资产来源。 在消费者担心产品的环境或人权问题的行业中,或者在受到假货和欺诈困扰的行业中,这将有助于提供证据。 使用区块链,企业可以直接与客户共享有关产品源头的数据。 可追溯性数据还可以揭示任何供应链的弱点 — 当货物在装货码头等待运输时。

提高效率和速度

涉及大量纸质工作的传统流程非常耗时,容易出现人为错误,并且通常需要第三方介入。 通过使用区块链来简化这些流程,可以更快、更高效地完成交易。 凭据可与详细的交易记录一起存储在区块链上,消除了对交换纸质文件的需求。 无需协调多个账本,从而显著加快清算和结算速度。

自动化

交易甚至可以通过“智能合约”实现自动化,从而提高您的效率并进一步加快流程。 一旦满足预先指定的条件,就会自动触发交易或下一步流程。 智能合约可以减少人为干预以及对第三方验证合同条款是否已得到满足的依赖性。 例如,在保险行业,一旦客户提供了所有必要的凭证提出索赔,索赔就可以自动得到处理和支付。

深入研究:何为智能合约?

各行各业如何受益于区块链

区块链在供应链和食物链中的好处

通过区块链在贸易伙伴之间建立信任、提供端到端的可视性、简化流程、更快地解决问题,所有这些都有助于建立更强大、更具弹性的供应链和更好的业务关系。 此外,参与者还可以迅速采取行动来应对中断事件。 在食品行业,区块链可以帮助确保食品安全和新鲜,并减少浪费。 如果食品发生污染,可以在几秒内而不是几天内追溯到其来源。

了解供应链区块链

银行业和金融行业区块链的好处

金融机构使用区块链取代旧流程和文书工作可以获得很多好处,例如消除摩擦和延迟以及提高整个行业的运营效率,包括全球贸易、贸易融资、清算和结算、消费者银行业务、贷款和其他交易。

了解金融服务区块链

医疗保健区块链的好处

医疗保健是饱受数据泄露困扰的行业,区块链可以帮助该行业提高患者数据的安全性,同时使提供方、付款方和研究人员更容易共享记录。 访问控制权仍掌握在患者手中,从而增加了信任度。

了解医疗保健区块链

医药区块链的好处

当医药产品在供应链中移动时,每一个行动都将被记录。 由此产生的审计跟踪日志意味着医药产品可以从源头追溯到药房或零售商,这有助于防止造假,并使制造商能够在几秒钟内找到需要召回的产品。

了解生命科学区块链

政府区块链的好处

区块链可以帮助政府更智慧的工作和更快速的创新。 公民和政府机构之间安全的数据共享可以增加信任度,同时为监管合规、合同管理、身份管理和公民服务提供不可篡改的审计跟踪。

查看政府区块链的实践应用

保险区块链的好处

保险公司正在使用区块链和智能合约来自动化手动和纸张密集型流程,例如承保和理赔结算,以提高速度和效率,并降低成本。 区块链提供速度更快且可以验证的数据交换,有助于减少欺诈和滥用。

了解有关保险区块链的更多信息

相关解决方案

IBM Blockchain Platform

屡获殊荣的 IBM Blockchain Platform 提供一套最完整的区块链软件、服务、工具和示例代码,可用于在各种云环境中运行 Hyperledger Fabric。

了解 IBM Blockchain Platform

区块链咨询和服务

携手行业领先的区块链服务提供者共同创造。 我们的咨询服务可以帮助您构建以最佳技术为基础的可扩展的业务网络。

IBM Blockchain Services

供应链透明度

使用 IBM Blockchain Transparent Supply 创建区块链生态系统,与您的供应链合作伙伴共享数据,从而将交易建立在信任的基础上,提高交易效率。

了解 IBM Blockchain Transparent Supply

贸易金融区块链

借助我们的网络召集专业能力,或者加入我们业界领先的平台 we.trade,以扫除隐形的增长障碍并重塑贸易和贸易金融。

了解贸易金融区块链

食品供应区块链

创建更智能、更安全、更可持续的食品系统。 IBM Food Trust™ 是唯一一个可将整条食品链中的参与者与许可、永久和共享数据记录联系起来的网络。

了解 IBM Food Trust

供应商管理

通过 Trust Your Supplier 加速供应商发现和启用流程,该区块链网络旨在改变供应商管理方式并降低风险。

了解 Trust Your Supplier

资源

什么是区块链?

从头开始了解区块链的全部含义以及它如何让您的企业受益。 免费下载一份 IBM 的《区块链傻瓜书》指南副本。

面向商业的区块链

商业区块链建立在共享的、不可篡改的、获得许可的账本之上,可以提高合作伙伴之间的信任程度,提高他们的工作效率。

区块链与智能合约

智能合约是区块链网络的一个强大的组件。 通过自动化业务流程,它们可以消除组织之间的摩擦,降低运营成本并加快交易速度。

区块链行业应用

借助 IBM Blockchain 消除摩擦、建立信任并创造新价值。 了解区块链如何帮助企业和行业解决问题,并从中获得启发。

区块链解决方案

您可以通过为供应链、全球贸易、国际支付、食品供应等带来革命性的信任和透明度,加入正在彻底改变行业的现有区块链网络。

后续步骤

浏览我们的参考指南,更深入地了解区块链的各个方面,包括工作方式、使用方法以及实施注意事项。

区块链主题

什么是区块链

Hyperledger

智能合同

面向商业的区块链

区块链安全性

Blockchain for good

区块链和物联网

区块链发展趋势、挑战与机遇的分析与展望 - 知乎

区块链发展趋势、挑战与机遇的分析与展望 - 知乎首发于洞悉IOT物联网切换模式写文章登录/注册区块链发展趋势、挑战与机遇的分析与展望袁 帅​北京新荟友科技有限公司 创始人随着区块链与数字经济、新基建、工业4.0等的不断融合发展,这项重塑生产关系和建立信任机制的技术,其样貌也逐渐清晰,甚至已经有一些应用走进了现实。那么区块链技术有哪些最新发展趋势、挑战与机遇呢?本文整理了来自一线专家学者对于区块链的观点与认识,来还原对区块链庐山真面目的揭示与呈现,以求得知底层技术与上层应用的出入法。核心观点摘要如下:1.区块链是一种在没有信任或者缺乏信任关系的情况下建立的信任机器,所以区块链对于发展中国家,特别是对信任度比较低的国家意义非常大。2.我们认为在2030-2035年左右,绝大多数的企业都将在区块链技术平台上运营。从现在到2030年,这一段时间将是区块链技术发展和应用的高潮期。3.区块链的经济学意义就是集中式共享数据的边际成本已经高于边际效应。因此,区块链技术是数字经济的重要组成部分,也是数字经济的重要推动力。4.人类社会最终将从万物互联过渡到万物智联、万物信联的时代,区块链技术是平台经济、共享经济和数字经济的底层基础。5.区块链项目有别于传统信息化项目的“堆积木”,需要从流程、激励、标准、治理、生态等机制上全面考虑和设计。关于信任如何理解区块链是一种建立信任的技术?区块链是一种在没有信任或者缺乏信任关系的情况下建立的信任机器,所以区块链对于发展中国家,特别是对信任度比较低的国家意义非常大。一则是社会发展而言,通过区块链技术有助于发展中国家加快进入信任社会,提升社会治理和信任环境的改善,二则是对行业发展来说,区块链技术对于信任程度比较低,或者存在信任关系但信任关系不连续、信任成本比较高的行业都具有颠覆性效果。具体到我国当前所处的历史机遇期和经济结构调整期,通过发挥区块链技术的融合、赋能与链接作用,可以避免或者不用再走欧美国家近一百年构建信任社会的道路,因此具有十分重要且长远的意义。发展阶段如何理解区块链技术在当前所处的发展阶段?人们总是高估技术对当前的挑战,低估技术对长远的挑战。类比互联网的发展历程,区块链应该会经历一个从学术圈、技术圈往更广大用户和更广阔场景渗透和扩散的过程。1990 年代之前的互联网仍然是军队、高校、学院和技术圈的话题和实践,比如 TCP/IP、WWW 等协议,从 1994 年开始才出现各种客户端(比如浏览器、ftp 客户端、Telnet 客户端等等),再后来才有商业应用,比如门户、新闻、电商、社交、办公等等。如果把2018年看作区块链的产业元年,我们认为在2030-2035年左右,绝大多数的企业都将在区块链技术平台上运营。从现在到2030年,这一段时间将是区块链技术发展和应用的高潮期。数字化转型区块链技术与数字化转型的关系是什么呢?区块链跟数字经济的关系可以从分为三个方面。首先,区块链技术是数字经济的重要组成部分,也是数字经济的重要推动力。当人类社会进入数字驱动的社会时,数据在每个人的手中没有价值,数据只有通过共享才有价值。传统的数据共享与数据保护形成了天然矛盾,区块链便应运而生,通过分布式账本技术在实现数据共享的同时实现了数据隐私保护。区块链的经济学意义就是集中式共享数据的边际成本已经高于边际效应。第二,经济组织形态将从单一中心化的垂直信任关系向多中心化的分布信任关系转变。千百年来,生产关系的构建与经济体的演进都是通过中心化实现,做生意也是通过中心化组织实现,未来区块链技术可以使人类社会从需要无数个中心化组织提供背书的机制,到通过在零信任环境下通过点对点交易建实现信用社会的形态转变。这将无限扩张了人类的信任空间。假如现在的经济交易规模是基准值100,那么进入区块链经济社会的交易规模将变成100²,甚至是N倍。第三,人类社会最终将从万物互联过渡到万物智联、万物信联的时代,区块链技术是平台经济、共享经济和数字经济的底层基础。一份调研报告显示,北京市有2000万人口,汽车使用率大约是4%,假如让汽车使用效率达到30%,那么在同等人口量级情况下,用车需求只有三分之一或者五分之一。现在,在北京一个人用一辆车或者两辆车,但在未来全面化的数字经济场景下,用户可以拥有千分之一宝马、万分之一的奥迪等等数字所有权权益和使用权权益,这就形成了围绕汽车的平台经济与共享经济,这一数字化经济形态的底层基础就是区块链。未来,汽车公司不再卖车,而是成为了出行服务商。车企未来的对标对象可能不是宝马、奔驰等同行竞争者,而是Google、Uber甚至是区块链行业巨头等。现在看来,这是对区块链技术和数字经济关系的一种设定,而未来十年很有可能会演变为一种客观存在。挑战区块链技术应用在数字化转型的过程中还面临哪些挑战?如果我们现在用区块链去解决问题,可能面临多方协作的共识问题。目前区块链的难点包括以下几点:第一,多方共识,多方协作。建立区块链生态需要第一推动力;建行开发贸易融资平台,建行是第一推动力;互联网法院应用数字存证平台,法院是第一推动力;北京在发布政务区块链应用蓝皮书时提到已将区块链技术用在了140多个场景中,北京市政府是第一推动力。这是目前做区块链项目面临的第一个难点。第二,全面理解,深入认识。一般的用户和企业客户可能知道区块链的技术价值,但还未能充分理解区块链的技术本质和应用逻辑。根据我们过往的咨询案例与切身体会,很多用户甚至是大企业客户,都不太理解区块链的技术原理、标准、场景、扩容、测链、跨链等专业知识,对于隐私计算、数字水印、零知识证明、同态加密等更为细分复杂的技术研究,了解和认识更为有限。另外,当下还缺少垂直的区块链技术培训企业与媒体公司,能够扮演客观独立的角色,还未能对区块链产业环境和趋势研究发挥净化、引导和培育的作用。第三,生态思维,价值共识。区块链项目有别于传统信息化项目的“堆积木”,需要从流程、激励、标准、治理、生态等机制上全面考虑和设计。很多客户在做区块链项目时,会将其类比为ERP(企业资源计划)、MES(生产信息化管理系统)、HIS(医院信息化系统)或EMRS(电子病历信息系统)等项目,或其迭代升级的版本。其实,在区块链落地应用的发展初期,区块链平台的体系化与标准化将成为重要“法宝”,多方高效协同是取胜的关键。区块链网络之所以被称为价值网络,是因为在该网络中,每个参与方都在承载网络价值的传输,这其中涉及到的参与方可能包括大型企业、中小型企业,甚至个人。只有在多方为共同目标努力的情况下,区块链才能更好的赋能跨企业合作。制定合理的激励机制、任务分配与绩效考核方法,也是其遵循的核心原则。机遇区块链技术在应用方面将会呈现怎样的发展图景?第一,区块链在政府、医疗等公共服务行业的作用和潜力巨大。因为政府行业跟金融服务行业没有区别,都要提供办贷款、结婚证、社保、医保等服务,都是数字化比较密集的行业。区块链和政府公共服务行业结合的一个抓手,我们认为是区块链城市,就是区块链底层技术服务与智慧城市的结合。通过区块链技术实现G2G、G2B和G2C之间的数据共享,为市民提供更加优质便捷的公共服务,为企业提供稳定、透明、便捷、高效的营商环境,为政府的放管服改革和国家治理体系治理能力的现代化提供可靠支撑。在公共医疗领域,由于医疗数据的高隐私性和场景特殊性,数据流通不畅及信息不对称等情况加剧了就医体验差、诊疗周期长、结果互认差、医患矛盾、假药劣药等诸多问题层出不穷且难以规避。面对医疗健康产业的种种问题或痛点,区块链在保障患者数据隐私的前提下,通过打通医疗数据的信息流通、存证与共享渠道,进而改善机构之间互为数据孤岛的现状,重建医患之间的信任,提高行业效率。第二,金融行业目前仍是区块链行业的主战场,但是相对重要性正在下降。通过对全球200个信息公开的案例进行调研,区块链的金融业用例已从70%-80%降至40%,重要性正在下降。同时,金融行业的区块链将会更多地与实体经济融合,而不是简单的金融流程变革上的区块链应用。第三,区块链在供应链金融领域依然有非常大的发展空间。我国供应链整体效率还比较低,但供应链流程效率的改善对于加快我国智能化制造和工业4.0的转型升级,无疑将具有十分重要的意义。通过区块链可以重塑供应链和产业链,目前整体上还处于两链融合和三链融合的阶段。隐私安全区块链技术在个人隐私保护和网络安全方面发挥着怎样的作用?第一,要正确理解隐私跟共享的关系。只要共享,数据泄露、隐私泄露的可能性就会提升。要做到数据共享,同时又有特别好的隐私保护,这是没法实现的。第二,要正确理解区块链和隐私的关系。我们说人工智能需要大数据,但实际上区块链需要人类智能就足够了,根本用不到人工智能——因为区块链是小数据载体。举个例子,银行办理国际汇款业务,最快是三天,需要填很多表单,可能涉及到多个银行中介反复交叉核对与验证工作。而加入这些银行中介节点都在同一个区块链网络中,情形就大不一样了,因为区块链能同时提供隐私保护和数据共享,每一个节点单位只需要两三个数据项的验证与确认就OK了,所以区块链对隐私保护是革命性的。作用与影响区块链技术与其他新型信息技术,特别是大数据技术的关系和相互影响?首先,区块链技术是一个底层技术,但不是显性技术,不像人脸识别软件,安装了就能立刻能感受其存在作用的技术。因为,区块链技术是需要与各种信息技术相融合、相连接的技术,本质上是要嵌合在多种技术体系中的一种技术。第二,数字经济的本质是数据经济。数字经济的发展需要大量的数据,大量的数据如果是真实的、相关的、有用的,那就太完美了,而现实是大量数据可能是低质的、虚假的、不相关的、价值密度低的。区块链可以对数据起到一个过滤和筛选的作用,然后对优质的可信的数据进行安全接入和可信共享,进而提纯大数据分析价值或赋能AI算法学习。因此我们认为区块链根本性地改变了数据接入技术,但不改变数据分析技术。第三,我们所谓的云计算更多是对企业内部而言的,区块链是什么概念? 区块链的意义对于企业就像ERP,ERP是对内的流程管理。如果未来企业的商业生态都基于区块链服务而构建,这就不是简单的迭代关系,而是系统改造了。所以,区块链既是一种网络技术,也有可能基于云计算平台之上而构建。第四,物联网、边缘计算这些技术未来会基于区块链平台而开发,这也是一个发展趋势。因此,区块链技术是一个融合性技术,它可以同时促进各项技术得到更好的发展,每项技术实现相得益彰、包容共进。以上内容来自公号: 量观网络 版权归其所有,转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯权益,请作者持权属证明联系,将及时更正、删除。计划目标:“新基建 新职业”:打造100+新型物联网实训基地,培训100万+物联网新型人才。一是,打造100家新型物联网实训基地。通过对行业企业实地走访与考察,并对企业在物联网实训设施、设备、环境、实训队伍、实训资源、管理机制等方面的工作进行评估,对达标的企业授予“中关村物联网产业联盟实训基地”的称号。二是,开展物联网新职业调查。通过开展线上调查与行业企业的实地调研,结合相关可查资料,在数据分析的基础上形成物联网新职业人才画像,发掘物联网行业中在细分领域的新职业。中关村物联网产业联盟将与企业共同开发新职业的职业能力标准,同时产业联盟为其职业能力标准提供从团标到村标再到国标的升级通道。三是,建立证书评价体系。依据国家职业资格证书制度内容框架,运用标准参照型职业能力评价技术,开发线下教材与职业能力提升资源包,通过实施完整的评价过程,做大做强物联网从业人员职业能力评价证书,实现与国家人才政策和职业能力提升计划政策的接轨。四是,建立新职业发布机制。随着社会经济技术的快速发展,行业内的新岗位和新职业将不断出现,建立新岗位、新职业的发现和发布机制,促进行业新兴人才和复合性人才的培养和成长,推动行业内新职业的规范化发展。物联网实训基地建设相关事宜,请联系垂询中关村物联网产业联盟。发布于 2020-08-07 11:04区块链(Blockchain)物联网物联网产品​赞同 4​​1 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录洞悉IOT物联网洞悉物联网行

区块链到底有什么价值? - 知乎

区块链到底有什么价值? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册价值区块链(Blockchain)区块链到底有什么价值?关注者25被浏览10,515关注问题​写回答​邀请回答​好问题​添加评论​分享​22 个回答默认排序万向区块链​已认证账号​ 关注《经济学人》2015年的一期封面文章将区块链定义为“信任的机器”,可以说是对区块链的核心价值做出了十分精辟的总结。如果觉得这一概括过于抽象,那中国银行前行长李礼辉的观点可以看作是对这一概括的进一步阐释,即“区块链是用技术低成本地建立信用”。所以总的来说,区块链最重要的价值在于构建信任。 我们为什么需要依靠区块链来构建信任? 人类社会正在向数字化世界迁徙,“数据”是数字化时代的石油,只有数据可信,才能进行后续的价值挖掘,不可信的数据没有价值。目前在很多具体的生活和生产场景中,我们构建信任的手段其实相当贫乏,无非是熟人之间基于过往经验判断对方是否可信,或是依靠具有权威性的第三方,如银行、政府等机构来进行信用担保。这种方式具有一定的局限性,数据只有流通才能产生价值,才能实现多边协作,而原有方式限制了数据的跨域共享和流通。因此,通过区块链这一技术手段构建的信任会更加客观、稳定,从而让更多参与方能够放心地参与合作。 区块链是如何构建信任的呢? 从技术角度来看,区块链整合了分布式账本、密码学、点对点网络、共识机制、智能合约等基础技术元素,能够形成不可篡改的可信数据记录。具体来说,在基于分布式账本的网络中,不存在单一的中心机构来追踪记录数据,而是由网络中的所有参与方一同记录数据的流转与交易过程,而且所有参与方是平等合作的关系,平等共享网络中的所有信息。若某个节点想要篡改网络中的信息,除了更改自己手中的数据记录外,还必须修改网络中其他所有节点中的数据记录,否则新的信息将无法通过其他节点的验证,从而不能生效。而修改网络中所有节点的记录成本高昂,从而降低网络中节点作恶的可能性,进而增强网络中数据的安全和可信性。这些安全可信的数据记录就是为参与交易或合作的多方构建信任、让他们达成共识的基础。 区块链构建的信任可以应用在哪些方面? 如上所述,数据只有流通才能产生价值,那怎么才能让参与方在数据流通中消除对“隐私数据泄露”的顾虑呢?答案是在区块链中加入隐私计算。这既保证了数据的“真实性”,又保证了数据在流通过程中“隐私数据”的安全性。万向区块链打造的“PlatONE”,就是支持隐私计算的底层联盟链。基于联盟链构造的解决方案,在保证数据真实和安全的情况下,实现参与方之间数据的流通和共享,从而实现多方协作。通过实践发现,在实际应用中,区块链与人工智能、物联网、云计算、大数据等数字化技术进行融合,能更好地发挥其价值。大家常常会有这样的疑问:虽然区块链上的数据不可篡改,但如果上传上去的数据本身就是假的,该怎么办?一个可行的解决方案就是利用区块链+物联网技术解决上链信息的可靠性问题。万向区块链已与物联网领域的合作伙伴摩联科技联合打造了“BoAT+PlatONE物联网数据赋能平台”,创新性地将区块链技术与物联网技术相融合,从数据采集、上链、存证全流程保障数据的安全与可信性。基于此生成的可信数据记录可以看作是连通现实和数字世界的可信数字底座,为区块链、物联网等新技术在具体生活和生产场景中的应用奠定基础。 通过这种技术的融合,万向区块链构建了多个场景解决方案。如基于“BoAT+PlatONE物联网数据赋能平台”,万向区块链研发了生物资产可信监管及金融服务平台,通过嵌入了区块链SDK的物联网设备实时采集每头牛的动态数据,记录和监控每头牛从入栏到出栏的全生命成长周期,再过加密传输至生物资产金融服务平台进行存储。不仅实现了生物资产身份电子化,将原本难以量化评估的不同生长阶段的"牛"的价值结合体重数据形成了精准的"数据资产"。更重要的是,这些数据原生在区块链上,具有安全、不可篡改、唯一性和可追溯性,真正从源头构建了可信数据的商业闭环。这一方案已在新疆、山东多地的肉牛养殖场应用落地,赋能传统肉牛养殖产业实现数字化转型。 同时,万向区块链也在积极探索区块链技术在工业领域的应用价值,创新性地提出了“分布式认知工业互联网”这一概念,即用区块链、隐私计算、知识图谱三大核心技术形成的分布式认知技术,赋能传统工业互联网应对数字化转型过程中面临的信任、数据隐私安全、数据价值挖掘与应用等问题。目前,“分布式认知工业互联网”平台也已经在汽车零部件质量溯源、石化仓储等多个场景应用落地。发布于 2021-11-23 18:25​赞同 2​​添加评论​分享​收藏​喜欢收起​孤鹤​​互联网行业 监事​ 关注保证公平公正和公开。公平,涉及随机性的,比如盲盒骗局,游戏装备掉落偏向内部号等等。公正,涉及概率性的,比如赌场作假,游戏抽奖抽卡故意宰重氪玩家,福利彩票延迟开奖被质疑。公开,投票决定公益事业资助对象、公众监督善款去向,追踪不法分子洗钱等等。发布于 2023-09-03 13:02​赞同 1​​添加评论​分享​收藏​喜欢

404 您访问的页面找不到了_腾讯网

404 您访问的页面找不到了_腾讯网

什么是区块链,区块链的诞生,定义,核心技术,分类是什么? - 知乎

什么是区块链,区块链的诞生,定义,核心技术,分类是什么? - 知乎切换模式写文章登录/注册什么是区块链,区块链的诞生,定义,核心技术,分类是什么?sailman区块链的诞生  公认的最早关于区块链的描述见于中本聪所撰写的比特币白皮书,但在白皮书中并没有明确提出区块链的定义和概念(主要是在讨论比特币系统),“区块链”这个名词实际上是后来人们总结归纳后提出的。中本聪虽然没有直接提出区块链的概念,但比特币确实是第一个应用区块链技术的项目,可以说区块链是随着比特币的出现而诞生的。因此要讲区块链的诞生,就不得不从比特币的历史说起。  大家都知道比特币是中本聪在2008年提出的,但对其更早期的历史可能就不太清楚了。实际上比特币的诞生过程中,一个神秘团体起到了很大的作用,中本聪在设计比特币时大量借鉴了该社区的研究成果。这就是“密码朋克”(Cypherpunk),一个由密码学和计算机天才组成的交流小组。“密码朋克”的成员里可谓大咖云集,囊括了阿桑奇(维基解密创始人)、科恩(BT下载发明者)、伯纳斯·李(万维网发明者)等一众牛人,当然还有比特币发明者中本聪。  “密码朋克”提倡使用加密算法来保护个人隐私,反对政府和公司滥用个人数据,信仰自由主义。同时也是数字货币最早的传播者,在其电子邮件组中,常见关于数字货币的讨论,并有一些想法付诸实践。比如大卫·乔姆、亚当·贝克、戴伟、哈尔·芬尼等人在早期数字货币领域做出了大量的探索。比特币并不是数字货币的首次尝试。据统计,比特币诞生之前,失败的数字货币或支付系统多达数十个。正是这些探索为比特币的诞生提供了大量可借鉴的经验。  近三十年来,加密数字货币发展迅速,经历了多次演进,包括 e-Cash、HashCash、B-money 等。1983年,David Chaum最早提出e-Cash,并于1989年创建了Digicash公司。e-Cash是首个匿名化的数字加密货币。1997年,Adam Back发明了HashCash,以解决邮件系统中DoS 攻击问题。HashCash首次提出工作量证明机制(Proof of Work,PoW),该机制在日后的区块链项目中被广泛采用。1998年,Wei Dai提出了B-money,将PoW引入数字货币生成过程中。B-money可以算作去中心化数字货币的先驱,但是很遗憾的是,其最终未能设计落地。上面这些数字货币都或多或少的依赖于一个第三方系统的信用担保,很大程度上影响到了项目的成败。直到2008年比特币横空出世,将PoW与分布式存储、密码学、博弈论等结合在一起,首次从实践意义上实现了一套去中心化的数字货币系统。  比特币项目落地之后,吸引来了大量的挑战者和改进者。包括大量的竞争货币(山寨币)和底层技术平台(公链),这些在后面的文章会讲到。随着采用比特币底层技术的项目越来越多,慢慢就把“区块”和“链”这两个词合并起来变成一个词:“区块链”(BlockChain)。所以现在大家都用区块链来指代分布式存储、链式数据结构、非对称加密、共识算法、P2P网络等一系列技术的组合。 区块链的定义  那么区块链的准确定义是什么呢,Wikipedia上给出的说明比较冗长,简单归纳下:区块链是一种分布式数据库技术,通过维护数据块的链式结构,可以维持持续增长的,不可篡改的数据记录。当然笔者觉得维基百科这个释义是有些问题的,因为它更多的是强调区块链作为数据库的属性,而没有点明其核心价值,即以去中心化的方式解决多方互信和价值转移的问题。个人认为更好的定义应该是这样:区块链是一种去中心化的价值传输协议,通过共识来验证并记录数据,具有信息透明、可溯源和不可修改的特点。它由一系列技术组合而来,是制造信任、转移价值的底层基础设施。区块链的核心技术  区块链的核心技术包括:块链数据结构、分布式存储、非对称加密、共识算法、P2P网络、智能合约等。可以简化并抽象成五层技术架构。今天先简单解释下这些核心技术,后面的文章会深入挖掘技术背后的缘由和价值。  块链数据结构:将数据存储在一定容量的区块中,每个区块分为区块头和区块体(含交易数据)两个部分。区块头中包括前一区块的哈希值(PrevHash)和用于计算挖矿难度的随机数(Nonce);区块体则包含经过加密的具体交易信息。通过头哈希和时间戳将区块首尾连接起来,形成链条式的结构。分布式存储:网络中的每个节点都可以(不是一定)选择存储完整的数据,并依据出块情况对节点本地数据进行实时更新。  避免了中心化存储带来的安全和单点崩溃问题,同时结合共识机制来保证数据的一致性。非对称加密:包含两个密钥:公钥(publickey)和私钥(privatekey)。它们是成对存在的。公钥用来对数据进行加密和验签,私钥用来对数据进行解密和签名;一般公钥是公开的,私钥是自己保存,相对了传统的对称加密而言更具有安全性,是一种高级加密方式,常见的有RSA、ECDSA等。P2P网络:负责交易数据的网络传输和广播、节点发现和维护。网络中没有客户端或服务端的概念,只有平等的同级节点,每个节点既是客户端也是服务端。  信息会由发起节点开始向临近节点进行广播,收到信息的节点又会进行转发,从而实现指数级传播到全部网络节点。共识算法:也叫共识机制,主要用来解决各节点数据一致性和有效性问题。通过一套大家认可的验证方式对网络中的交易进行验证,验证通过后交易方可生效。同时也普遍作为发行Token的一种机制,常见的有POW、POS、DPOS、PBFT等算法。 智能合约:指的是一段写在区块链上的代码,一旦某个事件触发合约中的条款,代码即自动执行。其保证在没有第三方的情况下让参与方履行承诺(交易),履约过程是完全自动且不可逆转的。 区块链的分类  目前区块链主要可以分为三类,即公有链、联盟链和私有链。这是根据其开放(去中心化)程度来进行划分的,也是被大多数人认可的。  公有链:对所有人开放,任何人都可以参与的区块链,完全去中心化不受任何机构控制。其应用场景十分广泛,目前比较成熟的落地项目就是数字货币。 联盟链:被多个组织或个人构成的联盟控制,由指定节点进行共识验证的区块链,属于多中心化模式。主要应用于行业内多个机构之间的业务流转,例如供应链金融、商品溯源等。私有链:完全被单独的个人或某个组织控制记账权限的区块链,属于完全中心化模式。主要应用于企业内部的审计和数据管理等场景。  为什么会演变出上述的三种链,这里就不得不提到区块链领域的三元悖论(类似于蒙代尔三角),即区块链不可能同时满足去中心化、安全、高效这三个特性。必须弱化一者才能满足其它两点特性,而安全又是必须得到满足,于是人们只能在去中心化和高效当中进行取舍,逐步分化出了这三种类型的区块链。公有链实现了完全的去中心化和安全,所以性能上就比较差;联盟链为了商业应用,在安全的前提下要大幅提高性能,就不得不通过一个多中心授权的方式来管理节点,以提高共识效率,实现了多中心化;私有链考虑到内部使用的特点,把安全和效率做到了极致,所以必然依赖单个中心进行处理,实现了完全中心化。当然随着区块链技术的不断发展,三元悖论或许有被打破的可能,值得期待。区块链的应用场景  现在区块链技术还处于早期阶段,大量项目并未真正落地,但这波浪潮似乎已经不可阻挡。那么我们就来看看当前和未来可能落地区块链技术的应用场景吧。下面为大家总结了包括金融、物流、征信确权、物联网、资源共享、公益慈善、投票竞猜这七大典型应用领域。  金融领域:除了目前火热的数字货币之外,区块链在金融行业还有很多应用场景。比如证券交易结算、资产数字化、跨境支付、众筹投资和互助保险等,这些场景大多都是通过采用区块链技术来取缔中介方,以达到降低费用成本和提高处理效率的核心目的。物流领域:主要应用于供应链方面,基于区块链数据在交易各方之间的公开透明,供应链条可形成一个完整且流畅的信息流,帮助参与各方及时发现流程中存在的问题,进而提升供应链运转的整体效率。同时,利用区块链可追溯的特点,可以进行商品防伪和质量溯源,打击商品流通过程中假冒伪劣的问题。  征信确权:在征信领域采用区块链技术,既能提高征信的公信力(征信信息无法被篡改),还能显著降低征信成本,提供多维度的精准大数据。另外区块链技术还可以用于产权、版权等所有权的管理和追踪。利用数据不可篡改和不可伪造的特性, 可以在区块链网络上自由进行所有权的转移和交易。  物联网:当前的物联网环境中,所有的设备都需要通过云服务器连接,对中心化的网络管理架构依赖性较强,维护成本也随着物联网网络规模的扩大而显著增加。 采用区块链技术的话,可以使物联网体系中每个设备都作为一个独立节点运行,将计算和存储需求分散到全网各个节点中,有效防止网络中的任何单一节点故障或被攻击,所带来的整个网络崩溃和信息泄露的风险。 另外在工业物联网种,还可以动态掌握网络中各种生产制造设备的状态,提高设备的利用率和维护效率。  资源共享:相比于依然中间方的资源共享模式(Airbnb、Uber等),基于区块链的模式可以更直接地连接资源的供给方和需求方,其安全、透明、不可篡改的特性有助于减小摩擦。当然其效率在某些高频共享场景下会降低用户体验,但是对低频的场景确实非常适用,比如互助社区这种模式。发布于 2020-06-01 09:39区块链革命(书籍)区块链价值区块链(Blockchain)​赞同 1​​添加评论​分享​喜欢​收藏​申请

404 您访问的页面找不到了_腾讯网

404 您访问的页面找不到了_腾讯网

区块链技术可以应用到哪些领域? - 知乎

区块链技术可以应用到哪些领域? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册区块链(Blockchain)小蚁区块链区块链技术可以应用到哪些领域?在这个时代飞速发展的时代, 区块链技术可以应用到哪些领域?显示全部 ​关注者67被浏览92,783关注问题​写回答​邀请回答​好问题 2​添加评论​分享​26 个回答默认排序知乎用户谢谢阅读,最近万向区块链峰会举行,邀请了各个领域的大咖,听了几个会议的演讲,感觉中国银行原行长分享得挺好,结合他的演讲写下自己的一些思考。一、区块链改善的是什么?当我们提到人工智能的时候,我们大脑大概率会想到一个机器,这个机器可能具备人类智力去实现某个功能,比如机器人或者阿法狗(Alphago);提到云计算,我们会想到是把电脑的计算能力放到了云端的服务器里边;提到物联网,我们会想到万物互联,任何一个物品之间都有传感器,比如智能扫地机器人,智能灯具等等。但是,当我们提到区块链的时候,我们第一时间想不出一个具体的东西去描述它,联想不到任何与它相近的物体,因此它给人一种很虚幻的感觉。因为像人工智能、云计算、物联网等这些东西,它被实现出来,是可以提升人类社会生产力跟生产效率的。但是区块链,它的作用不是提升生产力,而是改善生产关系,改善人与人、节点与节点、机构与机构、国家与国家之间的关系。李行长在演讲中也指出,区块链是通过数学方法解决信任问题,只要信任共同的算法程序就可以建立互信,这种数字信任的价值就在于:在信任未知或信任薄弱的环境中形成可信任的纽带,节约信用形成所需的时间和成本,加持商业信用。在广域、高速的网络中建立零时差、零距离的认证工具,提高物联网的效率和可靠性。其中,值得我们注意的是,区块链的分布式存储技术可以将文件存储在不同的空间上,同时生成文件存储确权证明,在可靠性、边缘存储成本、数据隐私保护方面比传统云存储具有一定优势。二、区块链可以在什么方面突破我们的认知?大家可以看到李行长的演讲中提到各个方面的架构。现在的信息技术架构、商业社会、传统信任机制等,企业方面都分立割据,大企业保存着大量的数据,每个企业之间都是相互独立,自称体系,把控着中国各个领域。我们熟知的就有建行、商行、工行等银行;腾讯、阿里、字节等各大互联网公司。这里面值得我们注意的是:区块链技术通过建立数字化的可信立体交互架构作为解决方案,你可能好奇这是什么意思,就是我们可以通过区块链技术去完成企业之间的互信,实现数据等方面的交互,大家可以基于某种信任达成协作,更好地服务社会。如果这种方式能够形成,在未来就可能再造产业和商业模式,推动经济的升级。在观看会议的过程中,李行长提到:数字技术平等是数字经济、数字金融等竞争的基石。我觉得确实如此,如果我们的技术没有得到很好的发展,在经济、金融领域我们就会处处遇到瓶颈,像中国芯片行业、工程软件研发等领域,这两年被美国一直卡脖子。与此同时,我们可能忽略的是,中国是一个数据资源大国和数字化市场大国,在数据如此庞大的市场,构建数字化的信任体系,这是非常重要的一个领域。中国也是一个经济大国,维护经济金融稳定大局,主动防范系统性金融风险,是我们国家的金融底线,这也是为什么国内对虚拟货币打击这么严格,就是要维护国家金融的稳定,防止外部金融势力操控国内金融发展。三、区块链可以在哪些领域发挥作用?a.数据领域如果你是一个关注时事的读者,相信你一定发现了,今年我国通过了《中华人民共和国数据安全法》,这部法律主要是为了规范数据处理活动,保障数据安全,保护个人、组织的合法权益,维护国家主权、安全和发展利益,制定的法律。换句话说,未来我们的数据可能不会像现在一样,被随意窃取、随意贩卖、随意使用。数据资源如今也是国家的财富,数据安全是数据开发利用和数据产业发展的保障。如何去实现呢?区块链技术可能会在这方面大发光彩。区块链很好的一个作用就是数据确权,微众的报告中就提到隐私计算技术,它能够实现“数据可用不可见”,典型的技术包括:全同态加密、多方安全计算和联邦学习等,这些技术的发展可以实现数据在流通过程中的安全,可以大大促进数据的流转和交易,通过这些方式实现数据资源共享和安全应用。b.监管领域李行长在会议中指出:现在数字化技术创新正在改变金融服务模式,逐渐形成交互、交叉、交集的金融新业态。其中数字资产市场就包括:数字化的金融资产、资产话的专利数据、著作数据、所有权的交易、收益权的交易。看到这里我想起了,为什么这两年nft跟元宇宙被大家热捧,可能部分的原因是随着整个互联网的发展,我们很多资产慢慢转变为数字资产了,这个时候nft非同质化货币的属性,可以对数字资产进行唯一性的标识。举个不太恰当的比喻,如果我们有一个王者荣耀亚瑟的皮肤,我们可以生成一个数字标识,使这个皮肤不同于其他人的,借助这个思路,数字资产也可以生成唯一的标识。因此,随着数字资产市场的发展,唯一性的标识是必不可缺的,因为它涉及到所有权的归属问题。而随着数字资产市场的发展,国家也需要建立相应的监管机制,构建出数字金融安全的屏障,李行长提到以下三个点:1.深入分析分布式对等架构、去中心化架构等数字化技术已经具备及潜在的“颠覆性”性能。2.重点研究基于全新数字技术的去中心化金融工具穿越金融基础设施屏障的可能路径3.研究技术对策和政策预案。以上就是我观看整场会议的收获,更多内容大家可以去看视频如果您是对区块链技术感兴趣的,可以点赞+关注呀,后期会做出更多的分享。与此同时,我们在知乎组了一个社群,群里现在有40+位硕士博士研究生,群里一部分来自中国各大211与985高校,武大、中大、成电等,另一部分是C9高校的学长、国外顶尖高校的学者,北大、浙大、西交、帝国理工、悉尼大学等,研究的领域也是各个方面,从区块链应用到跨链,从存储到联邦学习,从TEE到共识等等。如果您是区块链方向的硕士或者博士研究生,实验室整体是在做区块链方向的,国内外高校都可以,研究生二年级起步确定了方向,博士最少也有一年的接触,我邀请你加入我们,跟我们一起交流讨论,互通有无。编辑于 2021-10-28 15:52​赞同 41​​7 条评论​分享​收藏​喜欢收起​优软众创英唐众创-智能产品方案开发,区块链应用开发(交易系统、软件开发)​ 关注大家都知道,区块链现在非常的火,它是一种共享的分布式数据库技术,区块链技术凭借着显著的特点在不同行业都会有非常好的发展前景,那么区块链有哪些应用领域?区块链应用1、数字货币:目前区块链技术最广泛、最成功的运用是以比特币为代表的数字货币。近年来数字货币发展很快,由于去中心化信用和频繁交易的特点,使得其具有较高交易流通价值,并能够通过开发对冲性质的金融衍生品作为准超主权货币,保持相对稳定的价格。自从有了比特币之后,已经陆续出现了数百种的数字货币,围绕着数字货币生成、存储、交易形成了较为庞大的产业链生态。以比特币为例,参与机构主要可分为基础设施、交易平台、ICO融资服务、区块链综合服务等四类。2、金融应用:区块链在金融领域有着天生的优势,在互联网上来说,这是区块链的基因决定的。主观来看,金融机构在区块链应用的探索上意愿最强,需要新的技术来提高运营效率,降低成本来应对整个全球经济当前现状。客观来看,金融行业市场空间巨大,些许的进步就能带来巨大收益。金融行业是对安全性、稳定性要求极高的行业,如果区块链在金融领域应用得以验证,那么将会产生巨大的示范效应,迅速在其他行业推广。在金融领域,除去数字货币应用,区块链也逐渐在跨境支付、供应链金融、保险、数字票据、资产证券化、银行征信等领域开始了应用。(1)保险业务:随着区块链技术的发展,未来关于个人的健康状况、事故记录等信息可能会上传至区块链中,使保险公司在客户投保时可以更加及时、准确地获得风险信息,从而降低核保成本、提升效率。区块链的共享透明特点降低了信息不对称,还可降低逆向选择风险;而其历史可追踪的特点,则有利于减少道德风险,进而降低保险的管理难度和管理成本。(2) 资产证券化:这一领域业务痛点在于底层资产真假无法保证;参与主体多、操作环节多交易透明度低出现信息不对称等问题,造成风险难以把控。数据痛点在于各参与方之间流转效率不高、各方交易系统间资金清算和对账往往需要大量人力物力、资产回款方式有线上线下多种渠道,无法监控资产的真实情况,还存在资产包形成后,交易链条里各方机构对底层资产数据真实性和准确性的信任问题。(3)数字票据:该领域痛点在于三个风险问题。操作风险,由于系统中心化,一旦中心服务器出问题,整个市场瘫痪;市场风险,根据数据统计,在2016年,涉及金额达到数亿以上的风险事件就有七件,涉及多家银行;道德风险,市场上存在"一票多卖"、虚假商业汇票等事件。区块链去中介化、系统稳定性、共识机制、不可篡改的特点,减少传统中心化系统中的操作风险、市场风险和道德风险。(4) 跨境支付:该领域的痛点在于到账周期长、费用高、交易透明度低。以第三方支付公司为中心,完成支付流程中的记账、结算和清算,到账周期长,比如跨境支付到账周期在三天以上,费用较高。区块链去中介化、交易公开透明和不可篡改的特点,没有第三方支付机构加入,缩短了支付周期、降低费用、增加了交易透明度。(5)征信管理:该领域的痛点在于数据缺乏共享,征信机构与用户信息不对称;正规市场化数据采集渠道有限,数据源争夺战耗费大量成本;数据隐私保护问题突出,传统技术架构难以满足新要求等。在征信领域,区块链具有去中心化、去信任、时间戳、非对称加密和智能合约等特征,在技术层面保证了可以在有效保护数据隐私的基础上实现有限度、可管控的信用数据共享和验证。(6)供应链金融:这一领域的痛点在于融资周期长、费用高。以供应链核心企业系统为中心,第三方增信机构很难鉴定供应链上各种相关凭证的真伪,造成人工审核的时间长、融资费用高。区块链去中介化、共识机制、不可篡改的特点,不需要第三方增信机构鉴定供应链上各种相关凭证的真实性,降低融资成本、减少融资的周期。(7)资产证券化:这一领域业务痛点在于底层资产真假无法保证;参与主体多、操作环节多交易透明度低出现信息不对称等问题,造成风险难以把控。数据痛点在于各参与方之间流转效率不高、各方交易系统间资金清算和对账往往需要大量人力物力、资产回款方式有线上线下多种渠道,无法监控资产的真实情况,还存在资产包形成后,交易链条里各方机构对底层资产数据真实性和准确性的信任问题。区块链去中介化、共识机制、不可篡改的特点,增加数据流转效率,减少成本,实时监控资产的真实情况,保证交易链条各方机构对底层资产的信任问题。3、区块链 + 行业应用:随着区块链技术在金融领域应用的不断验证,其技术优势在其他行业领域也逐渐体现出价值。目前,医疗健康、IP版权、教育、文化娱乐、通信、慈善公益、社会管理、共享经济、物联网等领域都在逐渐落地区块链应用项目,“区块链+”正在成为现实。(1)区块链 + 医疗:医疗领域,区块链能利用自己的匿名性、去中心化等特征保护病人隐私。电子健康病例(EHR)、DNA钱包、药品防伪等都是区块链技术可能的应用领域。IBM在去年的报告中预测,全球56%的医疗机构将在2020年前将投资区块链技术。(2)区块链 + 物联网:物联网是一个非常宽泛的概念,如果将通信、能源管理、供应链管理、共享经济等涵盖在内,区块链技术的物联网应用将成为一个非常重要的应用领域。(3)区块链 + IP版权&文化娱乐:互联网发展的越来越好,数字音乐、数字图书、数字视频、数字游戏等逐渐成为了主流。知识经济的兴起使得知识产权成为市场竞争的核心要素。但当下的互联网生态里知识产权侵权现象严重,数字资产的版权保护成为了行业痛点。区块链去中介化、共识机制、不可篡改的特点,利用区块链技术,能将文化娱乐价值链的各个环节进行有效整合、加速流通,缩短价值创造周期;同时,可实现数字内容的价值转移,并保证转移过程的可信、可审计和透明,有效预防盗版等行为。(4)区块链 + 公共服务&教育:在公共服务、教育、慈善公益等领域,档案管理、身份(资质)认证、公众信任等问题都是客观存在的,传统方式是依靠具备公信力的第三方作信用背书,但造假、缺失等问题依然存在。区块链技术能够保证所有数据的完整性、永久性和不可更改性,因而可以有效解决这些行业在存证、追踪、关联、回溯等方面的难点和痛点。相关内容:区块链的跨链技术区块链点对点交易系统开发区块链数字货币交易系统开发核心联盟链或成巨头新宠?来自京东金融研究院的区块链白皮书英唐众创:区块链的原理是什么?区块链交易平台系统开发原理如果你有任何不同见解或意见,欢迎你留言讨论。--------------------------------欢迎关注:我是英唐众创,还有关注我的知乎账号:@英唐众创@优软众创@深圳市优软众创技术有限公司方案:众创方案商城致力于分享智能产品方案、区块链技术应用开发经验,让生活更智能发布于 2018-04-25 14:23​赞同 101​​添加评论​分享​收藏​喜欢

区块链的核心价值 - 知乎

区块链的核心价值 - 知乎首发于陈俊漫游区块链切换模式写文章登录/注册区块链的核心价值Jean Chen媒体老兵,区块链创业者。中信新书《区块链实战》合著者。作者: 冒志鸿、陈俊由 ArcBlock 创始人兼 CEO 冒志鸿与副总裁陈俊合著、中信出版集团出版的《区块链实战:从技术创新到商业模式》,以通俗的语言和实际案例,从宏观的视角讲述区块链的起源、发展、技术趋势及落地应用场景,同时对层出不穷的新概念、新名词进行了辨析和讲解,破解了外界对区块链技术的各种迷思,帮助读者正确认识区块链的优势和局限之处。本书还以多个政府、企业的区块链项目情况,详解区块链应用的多层决策框架,以帮助组织决策者评估何时使用区块链。《区块链实战》系列书摘,在此连载。即使无法或无意了解区块链各项技术细节,相信读者还是希望能够从本质上理解把握区块链技术为我们带来的价值。在此,我们先从基本逻辑上来思考区块链究竟带来哪些基本价值,读者可以从这些价值的基础上去思考,这些价值会延展出哪些其他的价值,以及这些特点对你的业务意味着什么。核心价值一:通过降低验证成本,来降低“信任”的成本区块链数据公开可验证、记录难以篡改的技术特性,使得区块链网络的参与方对数据的验证成本(cost of verification)大为降低,这种成本包括时间的成本和直接的经济成本。举例而言,现在如果要彻底验证一张发票的真伪,其实没那么容易,要耗费很多时间和成本,结果是一般不那么重要的情况下,比如企业的报销,只能大体上看看票据的模样,金额差不多就可以了;而在重要的场合下,比如进出口贸易的核验,就需要耗费很多的手续和时间,尽管如此,仍然存在着大量的问题。如果采用区块链技术,那么一个全面的校验,包括从发票本身、发票交易本身、交易方、交易方的授权方,甚至交易方的身份登记信息,其行政管理方等等,都可以在数秒的时间内得到全面、完整、独立的验证。区块链行业有个著名的口号:“不要相信,验证”(Don't trust, Verify!),意思就是用区块链技术,你不需要盲目地靠“相信”、“信任”来对待每条数据,而是无时不刻地在检查校验这些数据,而且这些检查完全是独立的,你不需要依赖任何第三方,也不需要去找最初提供这些检查信息的人来校验,自己就能独立完成,而且这一切都只是在以秒计算的时间内,花费极少的费用就能完成。这种机制将极大程度上改变商业世界。信任,是世界上任何价值标的转移、交易、存储的基础。缺失信任,人类将无法完成任何价值交换和协作。回顾人类发展史,最初人们靠血缘宗族等熟人关系来建立信任,随着社会的发展,人们创造并利用宗教和道德来建立信任;再到后来,人类又发明依靠法律、中心化组织机构来建立信任。到了今天,互联网将全世界近一半人口连接起来,人类社会逐渐数字化,互联网的作用也正在从信息传播、消除信息不对称转移到价值传递、降低价值交换成本,区块链的出现恰逢其时——用数学算法来建立交易双方的信任关系,使得弱关系可以依靠算法达成强连接,进而进行价值交换活动。传统的“信任”是个极高成本的东西。而区块链技术让验证变得如此高效率低成本,从而导致信任建立和维护的成本大大降低,这在任何商业体系里都极具价值。把区块链描述成为“信任机器”或者“制造信任”肇始于 2015 年《经济学人》杂志的封面文章,后来常常被许多人和大量文章引用。我觉得,如今再继续沿用并扩展这一区块链早期布道的说法,容易让不了解技术的人对区块链产生 “玄学” 的印象或者不切实际的看法。准确的理解,应该是区块链通过降低验证成本来降低了建立“信任”的成本。核心价值二:去中心化,减少对中间人的依赖,颠覆现有的商业模式由于区块链的设计特点,采用 P2P 的网络结构,这就使得基于区块链的系统天生具有“去中心”的特点,其应用的特点就是更少依赖于中间人。“中间人”是今天商业模式里的重要商业基础。在一本影响颇广的商业读物《中间人经济》(The Middleman Economy)中,作者玛丽娜·克拉科夫斯基(Marina Krakovsky)指出在互联网高度发达的今天,中间人已经成为我们经济生活中不可或缺的一部分。减少对中间人的依赖带来的价值很容易理解:例如在区块链的金融类应用中,通过移除或减少中间人,从而减少中介费,降低基础设施复杂度,而取得降低成本的目的,其另一个好处是加快结算时间及周期。最初的区块链比特币的设计目标就是一个“点对点的电子现金系统”,就是想在不通过任何如银行、支付公司等中间人进行两人之间的安全转账,毫无疑问,这类应用已通过 10 多年的时间证明了其可行性和价值。减少对中间人的依赖并不是“消灭”中间人,实际上在商业之中,“中间人”是符合经济学专业分工合作理论,是有其存在价值,并非一无是处。在《中间人经济》中,作者通过大量经典案例研究归纳总结了中间人所扮演的 6 种角色:搭桥者、认证者、强制者、风险承担者、礼宾者、隔离者。中间人正是通过这 6 种角色的不同组合创造价值,为客户提供服务。区块链技术大量普及应用的时候,这些不同的中间人角色有些可能会失去大量的价值,有些会开始扮演不同的角色来适应技术的发展,有些反而会获得更大的机会。总之,区块链减少了对中间人的依赖但并不会对之彻底消灭,但对现有存在各种中间人弊端的商业模式必然带来颠覆性的影响。三种网络的不同结构比较“去中心化”是区块链带来的一个更大的价值转移机会。过去几年里,很多打着共享经济旗号的公司经历了大起大落,例如 Uber、AirBNB、WeWork 等美国“独角兽”企业,国内如滴滴、共享单车企业等。大多数这类公司实际上都是服务的聚合者,通过充当中间人的角色汇聚服务并加以出售,实际上这类“共享经济”公司的成功恰恰来自它们的不共享。区块链减轻对中间人的依赖,可能会让这种披着“共享经济”外衣的分时租赁模式变得更高效率,真正化身为共享经济。可能因为区块链的出现,出现的不仅仅是一批共享经济企业,而是一种共享经济“协议”来协调更多的角色能够公平地加入竞争和合作。本书后面章节会详细介绍什么是“去中心化”,以及“去中心化应用(Decentralized Applications,缩写 DApps)”等概念。核心价值三:发挥“群众力量”,降低网络建立的成本,加速产生“网络效应”去中心化的区块链,其实是一种“群众运动”。以比特币网络形成为例,如果以公司和政府的形式来建设形成类似于比特币这样一个网络的基础设施,即便抛开市场、法规、政策等因素,需要多少成本?运维这样的系统需要多少人力物力?更重要的一点在于,区块链的网络是“无需信任(Trustless)”的。何为“无需信任”?区块链特点之一是每个节点都是能独立验证的,不依赖于其他节点来形成全网的共识,也就是说区块链系统使得每个节点本身不需要是“可信赖的”,因为在这个体系下极其难以作恶。有人说 Google 当年的口号是“不要作恶(Don't Be Evil)”,而区块链能实现是“不能作恶(Can't Be Evil)”。无需信任就能加入网络的建设,这大幅度降低了准入门槛。相比之下,过去的银行、电信、政府,甚至互联网公司的网络全部是需要在可信任的基础上才能够组建网络,这个成本远远大于“无需信任”的区块链节点。以上我们主要是拿比特币网络举例,比特币网络是个不需要许可的“公链”;对于企业环境下的“联盟链”或“私链”这些需要许可的系统,网络构建成本下降仍然因相同理由而成立。传统平台的网络建立成本相当多地消耗在选择、审查、维护“可靠”的节点和网络上,而区块链平台的网络运行成本主要消耗在计算上,因此有人说区块链的世界是因为大家的信仰建立在对数学(算法)的信任之上(In Math We Trust)。以比特币而言,其基于工作量证明(PoW)的共识算法非常消耗电力资源,但如果按同等规模去比较例如一个银行的系统,会发现实际上比特币的设备和耗电可能低于整个银行系统运行 IT 系统的成本。而且比特币网络的扩展如前所述是依靠“群众力量”形成的,大家在一起分摊成本,并且可以根据市场的需求扩展到每一个角落,具备了传统网络不可比拟的优势。除了网络建设本身,另一个重要价值来自“网络效应”。网络效应(Network Effect)又称网络外部性(Network Externality),或需求方规模经济(Demand-side Economies of Scale),指在经济学或商业中,消费者选用某项商品或服务,其所获得的效用与“使用该商品或服务的其他用户人数”具有相关性时,此商品或服务即被称为具有网络外部性。最常见的例子是电话通信或社交网络服务:采用的用户人数越多,每一位用户获得越高的使用价值。“梅特卡夫定律”指出:一个网络的价值与联网的用户数的平方成正比,也就是每位用户所获得的效益并非常数,而是大约随着网路用户总人数成线性成长。网络效应:以电话网络为例,使用电话的人越多电话的价值就变得越大在互联网时代形成“网络效应”非常关键,大量公司的大量初期投入,通常来自于风险投资,都是为了能使自己的服务尽快形成网络效应。以比特币为例,并没有任何风险投资或传统投资进入,在过去 10 多年时间里创造的价值和增长,足以令任何企业汗颜,其网络效应的形成的一个重要原因就是比特币本身的激励机制,以及比特币基于区块链的特性让大众形成的对比特币的“共识”。为什么比特币能更快形成网络效应,“比特币”本身对网络效应形成的贡献是很明显的。比特币系统里获得比特币的规则其实很简单:1,谁出块谁就获得系统产生的比特币奖励,所有比特币都是靠出块来产生的,出块奖励每四年减半直到消失;2,交易手续费,交易费多少用于激励矿工节点的打包顺序,市场自己来决定。这个简单的体系至今工作良好,究竟是中本聪深谋远虑,还是偶然的神来之笔,我们已经无法考证。但可以肯定的是,这是个非常简单的规则,越简单越容易理解,每个人无论懂不懂技术还是经济都能明白。在这种简单的规则下,比特币用户越多,网络中的交易越多,意味着矿工能够收到的交易费就越多,这会激励更多矿工加入网络。网络中的矿工越多,全网算力越大,网络就越安全、越坚不可摧、越难以篡改,这无形中增加了用户对于网络的长期信心。为什么这么多人会对比特币这样一个凭空而来的数字货币奖励有信心,而对存在很久的积分等类似激励体系并不相信呢?重要的原因就是区块链的去中心化、公开透明可验证的特点,让大家更容易理解和相信规则,提前形成生态,加速形成“网络效应”。不仅仅在比特币的发展中大家看到了区块链对网络效益形成的加速和促进,而且在后来的以太坊、大量的区块链项目首次公开发行(Initial Coin Offering)等活动中,一而再再而三地看到了这种价值。目前,《区块链实战》一书可在中信出版集团以下官方渠道购得:• 纸质版:京东、当当网、天猫、中国图书网• 电子版:亚马逊、豆瓣阅读、微信读书、知乎、得到新书更多情况,请扫码登录新书官网查看。发布于 2020-09-28 12:42区块链(Blockchain)区块链技术区块链实战:从技术创新到商业模式(书籍)​赞同 1​​添加评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录陈俊漫游区块链区块链创业者,中信新书《区块链实战》合

区块链的好处 - IBM 区块链 | IBM

区块链的好处 - IBM 区块链 | IBM

区块链的优点

区块链可以提高整个业务网络中的数据信任度、安全性、透明度和可追溯性,并节省成本和提高效率。

建立信任并提高底线

业务区块链使用共享且不可篡改的账本,只有获得许可的成员才能访问该账本。 网络成员控制每个组织或成员可以看到哪些信息,以及每个组织或成员可以采取哪些行动。 区块链有时也被称为“无信任”网络 — 不是因为业务伙伴之间彼此不信任,而是因为 他们不必相互信任。

这种信任建立在区块链的增强安全性、更高的透明度和即时可追溯性基础之上的。 除信任问题外,区块链还能带来更多的商业利益,包括通过提高速度、效率和自动化来节省成本。 通过大大减少文书工作和错误,区块链显著降低了管理费用和交易成本,并减少或消除了第三方或中间人验证交易的需要。

深入研究:了解有关区块链技术的更多信息

区块链的五个重要好处

增强安全性

您的数据是敏感且关键的,区块链可以大大改变您查看关键信息的方式。 通过创建无法篡改且端到端加密的记录,区块链有助于防止欺诈和未经授权的活动。 隐私问题也可以在区块链上得以解决,解决方式包括匿名个人数据以及限制访问权限等。 信息存储在整个计算机网络上,而不是单个服务器上,这使得黑客很难查看数据。

深入研究:何为区块链安全性?

更大的透明度

如果没有区块链,每个组织都必须保留一个单独的数据库。 由于区块链使用分布式账本,导致交易和数据在多个位置采取完全相同的方式进行记录。 所有具有访问权限的网络参与者都能同时查看相同的信息,从而实现信息的完全透明性。 所有交易记录均不可篡改,并带有时间和日期戳。 这使成员能够查看交易的整个历史记录,并几乎消除了任何欺诈机会。

即时可追溯性

区块链创建了审计追溯机制,用于记录每一步旅程中的资产来源。 在消费者担心产品的环境或人权问题的行业中,或者在受到假货和欺诈困扰的行业中,这将有助于提供证据。 使用区块链,企业可以直接与客户共享有关产品源头的数据。 可追溯性数据还可以揭示任何供应链的弱点 — 当货物在装货码头等待运输时。

提高效率和速度

涉及大量纸质工作的传统流程非常耗时,容易出现人为错误,并且通常需要第三方介入。 通过使用区块链来简化这些流程,可以更快、更高效地完成交易。 凭据可与详细的交易记录一起存储在区块链上,消除了对交换纸质文件的需求。 无需协调多个账本,从而显著加快清算和结算速度。

自动化

交易甚至可以通过“智能合约”实现自动化,从而提高您的效率并进一步加快流程。 一旦满足预先指定的条件,就会自动触发交易或下一步流程。 智能合约可以减少人为干预以及对第三方验证合同条款是否已得到满足的依赖性。 例如,在保险行业,一旦客户提供了所有必要的凭证提出索赔,索赔就可以自动得到处理和支付。

深入研究:何为智能合约?

各行各业如何受益于区块链

区块链在供应链和食物链中的好处

通过区块链在贸易伙伴之间建立信任、提供端到端的可视性、简化流程、更快地解决问题,所有这些都有助于建立更强大、更具弹性的供应链和更好的业务关系。 此外,参与者还可以迅速采取行动来应对中断事件。 在食品行业,区块链可以帮助确保食品安全和新鲜,并减少浪费。 如果食品发生污染,可以在几秒内而不是几天内追溯到其来源。

了解供应链区块链

银行业和金融行业区块链的好处

金融机构使用区块链取代旧流程和文书工作可以获得很多好处,例如消除摩擦和延迟以及提高整个行业的运营效率,包括全球贸易、贸易融资、清算和结算、消费者银行业务、贷款和其他交易。

了解金融服务区块链

医疗保健区块链的好处

医疗保健是饱受数据泄露困扰的行业,区块链可以帮助该行业提高患者数据的安全性,同时使提供方、付款方和研究人员更容易共享记录。 访问控制权仍掌握在患者手中,从而增加了信任度。

了解医疗保健区块链

医药区块链的好处

当医药产品在供应链中移动时,每一个行动都将被记录。 由此产生的审计跟踪日志意味着医药产品可以从源头追溯到药房或零售商,这有助于防止造假,并使制造商能够在几秒钟内找到需要召回的产品。

了解生命科学区块链

政府区块链的好处

区块链可以帮助政府更智慧的工作和更快速的创新。 公民和政府机构之间安全的数据共享可以增加信任度,同时为监管合规、合同管理、身份管理和公民服务提供不可篡改的审计跟踪。

查看政府区块链的实践应用

保险区块链的好处

保险公司正在使用区块链和智能合约来自动化手动和纸张密集型流程,例如承保和理赔结算,以提高速度和效率,并降低成本。 区块链提供速度更快且可以验证的数据交换,有助于减少欺诈和滥用。

了解有关保险区块链的更多信息

相关解决方案

IBM Blockchain Platform

屡获殊荣的 IBM Blockchain Platform 提供一套最完整的区块链软件、服务、工具和示例代码,可用于在各种云环境中运行 Hyperledger Fabric。

了解 IBM Blockchain Platform

区块链咨询和服务

携手行业领先的区块链服务提供者共同创造。 我们的咨询服务可以帮助您构建以最佳技术为基础的可扩展的业务网络。

IBM Blockchain Services

供应链透明度

使用 IBM Blockchain Transparent Supply 创建区块链生态系统,与您的供应链合作伙伴共享数据,从而将交易建立在信任的基础上,提高交易效率。

了解 IBM Blockchain Transparent Supply

贸易金融区块链

借助我们的网络召集专业能力,或者加入我们业界领先的平台 we.trade,以扫除隐形的增长障碍并重塑贸易和贸易金融。

了解贸易金融区块链

食品供应区块链

创建更智能、更安全、更可持续的食品系统。 IBM Food Trust™ 是唯一一个可将整条食品链中的参与者与许可、永久和共享数据记录联系起来的网络。

了解 IBM Food Trust

供应商管理

通过 Trust Your Supplier 加速供应商发现和启用流程,该区块链网络旨在改变供应商管理方式并降低风险。

了解 Trust Your Supplier

资源

什么是区块链?

从头开始了解区块链的全部含义以及它如何让您的企业受益。 免费下载一份 IBM 的《区块链傻瓜书》指南副本。

面向商业的区块链

商业区块链建立在共享的、不可篡改的、获得许可的账本之上,可以提高合作伙伴之间的信任程度,提高他们的工作效率。

区块链与智能合约

智能合约是区块链网络的一个强大的组件。 通过自动化业务流程,它们可以消除组织之间的摩擦,降低运营成本并加快交易速度。

区块链行业应用

借助 IBM Blockchain 消除摩擦、建立信任并创造新价值。 了解区块链如何帮助企业和行业解决问题,并从中获得启发。

区块链解决方案

您可以通过为供应链、全球贸易、国际支付、食品供应等带来革命性的信任和透明度,加入正在彻底改变行业的现有区块链网络。

后续步骤

浏览我们的参考指南,更深入地了解区块链的各个方面,包括工作方式、使用方法以及实施注意事项。

区块链主题

什么是区块链

Hyperledger

智能合同

面向商业的区块链

区块链安全性

Blockchain for good

区块链和物联网

什么是区块链?区块链本身具有哪些技术特点和应用价值? - 知乎

什么是区块链?区块链本身具有哪些技术特点和应用价值? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册职场职场困惑区块链什么是区块链?区块链本身具有哪些技术特点和应用价值?关注者5被浏览9,750关注问题​写回答​邀请回答​好问题​添加评论​分享​4 个回答默认排序螃蟹哥炒币​​ 关注区块链是一种近年来备受关注的技术,在金融、物流、医疗等多个领域都有广泛的应用。本文将深入探讨区块链是什么,区块链的价值和应用前景有哪些,同时也分析其局限性。我们将从技术特点、应用场景等各个方面进行细致的解析,旨在全面而深入地了解区块链技术。区块链的定义和技术特点区块链是一种分布式账本技术,它的特点在于去中心化、不可篡改、安全可靠以及可追溯。区块链技术采用了一种分布式共识机制,通过多方的验证和认可来确保数据的可信度和完整性。首先,区块链的去中心化是指没有集中的第三方机构来掌控和管理数据,所有的参与者通过对等的节点来协同维护分布式账本。这种机制使得区块链能够突破现有的中心化体系的限制,实现更加普惠的数据共享。其次,区块链的不可篡改性是指一旦数据被写入区块链,就不能被篡改或删除。因为区块链上的每条记录都会被加密、指纹、签名等多种数据安全技术所保护,同时区块链的分布式共识机制也保证了数据的一致性和准确性。另外,区块链还具有安全可靠和可追溯的特点。区块链上的所有交易记录都被记录在分布式账本上,任何人都可以随时查看数据,这可以有效提高数据的透明度和公信力。且所有交易都是基于密钥签名的,这可以保证交易的安全性和隐私性。区块链的应用场景和价值区块链技术具有广泛的应用前景,尤其在金融、物流、医疗、知识产权等领域有着潜力巨大的应用。在金融领域,区块链技术可以实现跨境汇款、融资和交易等多种功能。例如,通过区块链技术,可以实现无人值守的智能合约,自动化执行交易流程,减少人力成本和时间成本。同时,区块链技术可以有效预防金融诈骗和洗钱等金融犯罪行为,提高了金融交易的安全性。在物流领域,区块链技术可以实现物品的全程追溯。区块链技术可以记录物品的来源、生产时间、运输路线等信息,确保物品的质量和安全性。同时,区块链技术还可以提高物流效率,降低物流成本,提高物流供应链可持续性。在医疗领域,区块链技术可以实现病历的共享和医疗数据的安全存储。目前,医疗行业存在着病历信息孤岛和医疗数据难以传递的问题,使用区块链技术可以将数据共享和存储在一个无中心化且安全可靠的平台上,保证了数据的完整性和安全性,提高了医疗服务的质量和效率。在知识产权领域,区块链技术可以实现数字版权、溯源查询等多种功能。区块链技术可以将知识产权和数字版权的信息记录在分布式账本上,确保信息的安全和可追溯性,有效保护了知识产权和数字版权的权益。区块链的局限性和挑战然而,区块链技术也存在一些局限性和挑战。首先,区块链技术的普及和应用面临着一定的技术门槛和成本问题。目前区块链技术的操作和维护还需要一定的技术知识和资金投入,对于小型企业和个人而言,存在一定的门槛和挑战。其次,区块链技术的可扩展性和性能也是需要关注的问题。随着区块链应用场景的不断扩展和数据量的不断增加,区块链技术所面临的问题也愈发复杂。例如在比特币区块链网络中,存在着交易速度较慢、交易费用过高等问题。此外,区块链技术的安全性也需要更加关注和保证。尽管区块链技术具有很高的安全性和不可篡改性,但是目前已经出现了多种攻击和漏洞。因此,区块链的安全性需要逐步提高和完善。总结总之,区块链技术是一种崭新的技术,具有广泛的应用价值和前景。同时,我们也需要考虑到区块链技术所面临的局限性和挑战。在实践过程中,需要根据具体场景和需求,合理评估区块链技术的可行性和有效性,推动区块链技术的标准化和规范化,提高其稳定性和可持续性。发布于 2023-11-08 09:07​赞同 2​​添加评论​分享​收藏​喜欢收起​中科基大数据数智转型,智慧大脑,有我,不再烦恼!​ 关注区块链技术是一种具有改变世界的颠覆性技术,2016年麦肯锡发布的报告中指出区块链是继蒸汽机、电力、信息和互联网之后最有可能触发颠覆性革命浪潮的核心技术”,北京航空航天大学蔡维德教授曾说过:如果银行采用区块链技术,那么每年将会节省2.2万亿美元的资金!”,这能看出区块链所蕴含的巨大潜力。大多数人对区块链的认识源自于比特币”,正是因为有区块链技术的支撑,比特币才在全世界范围内大行其道,那么到底区块链技术有哪些显著的优势呢?用一句话概括就是:用较低成本解决了陌生人之间的信任问题!具体有以下几点:一、去中心化。区块链技术可以看作是一种分布式账本”,大家人手一本,并且所有账本的内容是一样的,而记账的过程也全都是在大家共同的监管之下完成的,公开透明,所以不存在作弊”问题,因此应用区块链技术的交易过程可以大大减少人力和其他成本,举个好理解一些的例子,比如我们在某宝买了一件商品,那么我们买卖双方都要通过支付宝进行交易,假如支付宝有问题(比如卷款跑路、拿了钱不承认或者外界影响因素)那么我们的钱就损失了,但如果采用区块链技术那么我们买卖双方都生成完成了这笔交易就行了,并且不用担心任何其他问题。二、不可篡改。区块链技术决定了这种账本的内容一旦形成则不可更改,因此我们可以完全相信账本的内容,这就是区块链的可信任性”。假如有人想偷偷修改一下自己手里的账本,但是不要忘了大家人手一本,你就改你只能改你自己手里的账本,别人的是改不了的,因此你的修改就会被认为是非法和无效的,也就是说已经形成的账目,任何人都无法修改。三、安全性。区块链采用加密算法,确保未得到授权的情况下不能访问账户中的数据信息,这保证了账户中的数据信息可以长期保存。区块链技术使得交易过程无需再为信任而付出额外的成本,大大降低了交易的复杂性,所以区块链技术可以推广到所有的数字化领域,并为我们的社会带来巨大的改变。但是区块链技术同时也存在很多的缺点,不过随着技术的发展,这些缺点都将会被一 一克服,届时区块链技术将如同网络一样渗入我们生活工作的方方面面。区块链本质上是一个分布式的公共账本,将各个区块连成一个链条。我们可以将其定义为一个系统,它让一组互联的电脑安全地共同维护一份帐本,每台计算机就是一个数据库(服务器),中间无需第三方服务器。所以,区块链不是一种特定的软件,就像“数据库”这个三个字表现的意思一样,它是一种特定技术的设计思想。就像TCP/IP协议和普通人之间的关系,普通人完全不需要知道什么是互联网底层的TCP/IP协议,只要享受互联网提供的服务就行。普通人和区块链基本上没什么关系,除非是准备从事这方面的创业。比于传统的中心化方案,区块链技术主要有以下三个特征:1、区块链的核心思想是去中心化在区块链系统中,任意节点之间的权利和义务都是均等的,所有的节点都有能力去用计算能力投票,从而保证了得到承认的结果是过半数节点公认的结果。即使遭受严重的黑客攻击,只要黑客控制的节点数不超过全球节点总数的一半,系统就依然能正常运行,数据也不会被篡改。2、区块链最大的颠覆性在于信用的建立理论上说,区块链技术可以让微信支付和支付宝不再有存在价值。《经济学人》对区块链做了一个形象的比喻:简单地说,它是“一台创造信任的机器”。区块链让人们在互不信任并没有中立中央机构的情况下,能够做到互相协作。打击假币和金融诈骗未来都不需要了。3、区块链的集体维护可以降低成本在中心化网络体系下,系统的维护和经营依赖于数据中心等平台的运维和经营,成本不可省略。区块链的节点是任何人都可以参与的,每一个节点在参与记录的同时也来验证其他节点记录结果的正确性,维护效率提高,成本降低。可应用的领域:一、金融领域区块链能够提供信任机制,具备改变金融基础架构的潜力,各类金融资产如股权、债券、票据、仓单、基金份额等都可以被整合到区块链技术体系中,成为链上的数字资产,在区块链上进行存储、转移和交易。区块链技术的去中心化,能够降低交易成本,使金融交易更加便捷、直观和安全。区块链技术与金融业相结合,必然会创造出越来越多的业务模式,服务场景、业务流程和金融产品,从而给金融市场、金融机构、金融服务及金融业态发展带来更多影响。随着区块链技术的改进及区块链技术与其他金融科技的结合,区块链技术将逐步适应大规模金融场景的应用。二、公共服务领域传统的公共服务依赖于有限的数据维度,获得的信息可能不够全面且有一定的滞后性。区块链不可篡改的特性使链上的数字化证明可信度极高,在产权、公证及公益等领域都可以以此建立全新的认证机制,改善公共服务领域的管理水平。公益流程中的相关信息如捐赠项目、募集明细、资金流向、受助人反馈等,均可存放于区块链上,在满足项目参与者隐私保护及其他相关法律法规要求的前提下,有条件地进行公开公示,方便公众和社会监督。三、信息安全领域利用区块链可追溯、不可篡改的特性,可以确保数据来源的真实性,同时保证数据的不可伪造性,区块链技术将从根本上改变信息传播路径的安全问题。区块链对于信息安全领域体现在以下三点:一、用户身份认证保护二、数据完整性保护三、有效阻止DDoS攻击区块链的分布式存储架构则会令黑客无所适从,已经有公司着手开发基于区块链的分布式互联网域名系统,绝除当前DNS注册弊病的祸根,使网络系统更加干净透明。四、物联网领域区块链+物联网,可以让物联网上的每个设备独立运行,整个网络产生的信息可以通过区块链的智能合约进行保障。a)安全性传统物联网设备极易遭受攻击,数据易受损失且维护费用高昂。物联网设备典型的信息安全风险问题包括,固件版本过低、缺少安全补丁、存在权限漏洞、设备网络端口过多、未加密的信息传输等。区块链的全网节点验证的共识机制、不对称加密技术及数据分布式存储将大幅降低黑客攻击的风险。b)可信性传统物联网由中心化的云服务器进行管控,因设备的安全性和中心化服务器的不透明性,用户的隐私数据难以得到有效保障。而区块链是一个分布式账簿,各区块既相互联系又有各自独立的工作能力,保证链上信息不会被随意篡改。因此,分布式账本可以为物联网提供信任、所有权记录、透明性和通信支持。c)效益性受限于云服务和维护成本,物联网难以实现大规模商用。传统物联网实现物物通信是经由中心化的云服务器。该模式的弊端是,随着接入设备的增多,服务器面临的负载也更多,需要企业投入大量资金来维持物联网体系的正常运转。而区块链技术可以直接实现点对点交易,省略了中间其他中介机构或人员的劳务支出,可以有效减少第三方服务所产生的费用,实现效益最大化。五、供应链领域供应链由众多参与主体构成,存在大量交互协作,信息被离散地保存在各自的系统中,缺乏透明度。信息的不流畅导致各参与主体难以准确地了解相关事项的实时状况及存在问题,影响供应链的协同效率。当各主体间出现纠纷时,举证和追责耗时耗力。区块链可以使数据在各主体之间公开透明,从而在整个供应链条上形成完整、流畅、不可篡改的信息流。这可以确保各主体及时发现供应链系统运行过程中产生的问题,并有针对性地找到解决方案,进而提升供应链管理的整体效率。发布于 2023-11-13 15:28​赞同 1​​添加评论​分享​收藏​喜欢收起​​

区块链技术价值主要体现那些方面? - 知乎

区块链技术价值主要体现那些方面? - 知乎切换模式写文章登录/注册区块链技术价值主要体现那些方面?知乎用户V0Oh4U区块链主链,私链开发,嫁接各行各业如今,伴随诸多区块链项目的兴起与发展,人们不断见证着区块链为各领域带来的 变化,也逐渐认可区块链技术本身所呈现出的价值。其价值主要体现在以下几个方面:(1)区块链技术价值一 ——安全:基于去中心化 P2P 网络技术,区块链系统中所有参与节点将共同完成数 据的存储、维护,可有效避免中心化数据系统遭到攻击时数据泄露的风险。在数据 传输过程中,密码学技术提供了安全保障。此外,新区块的产生,是由全网多数节 点达成共识后的结果,任意节点都无法实现数据的完全控制,保证区块信息不可篡 改;(2)区块链技术价值二 ——确权:区块链的另一个价值体现在数据资产所有权的确认上。数据一经上链, 即可通过区块链网络确定与用户间的锚定关系,且后续的每一次数据操作都会被准 确记录,不可篡改。该特点可对数据资产进行有效保护,防止他人恶意篡改、窃取 与利用;(3) 区块链技术价值三 ——信任:去中心化区块链系统中,数据账本存于各节点,信息公开透明,为数据 可信提供了基础保证。由于采用共识机制,各节点需要按照严格的算法规则更新区 块信息,从而达成信息共享、多方决策一致,保障数据记录过程的可信性。整个过 程中,无需借助第三方机构即可建立信任网络,完成多节点的可信沟通;(4)区块链技术价值四 ——自动化:智能合约是一种可编程化的数字协议,当合约参与方满足触发条件后, 合约条款将自动执行。智能合约的加入,为区块链带来了新的契机,保障部署在区 块链上的合同条款可以实现自动、去中心化的计算,从而为诸多领域(尤其针对流 程复杂繁琐、效率低下的领域)的效率提升、成本控制起到不可忽视的作用;(5)区块链技术价值五 ——价值共享:传统中心化系统常涉及较多环节,参与中介多、流程复杂,耗费成本较高。而区块链系统则实现了各参与节点的去中心化连接,且各节点数据资产可 进行点对点自由流通,以降低中间成本。此部分节约成本将以收益的形式,根据对 区块链网络的贡献程度按照一定规则分配到各节点,在激励其他节点积极参与的同 时,实现全网价值的再分配。|本文由重庆匿名科技整理编辑|所有权归原著所有发布于 2018-10-18 11:12区块链(Blockchain)价值技术​赞同​​添加评论​分享​喜欢​收藏​申请

什么是区块链技术? - IBM Blockchain

什么是区块链技术? - IBM Blockchain

什么是区块链技术?

区块链是一种不可篡改的共享账本,用于记录交易、跟踪资产和建立信任

区块链的优点

区块链成功从这里开始

IBM《区块链傻瓜书》现已发行第 3 版,已向超过 6.8 万名读者介绍了区块链。

内容:

区块链基础

区块链如何运作

区块链的实践应用:用例

由 Linux 基金会主导的 Hyperledger 项目

第一次区块链应用的十个步骤

区块链技术概述

区块链定义:区块链是一个共享的、不可篡改的账本,旨在促进业务网络中的交易记录和资产跟踪流程。 资产可以是有形的(如房屋、汽车、现金、土地),也可以是无形的(如知识产权、专利、版权、品牌)。几乎任何有价值的东西都可以在区块链网络上跟踪和交易,从而降低各方面的风险和成本。

为什么区块链很重要:业务运营依靠信息。信息接收速度越快,内容越准确,越有利于业务运营。区块链是用于传递这些信息的理想之选,因为它可提供即时、共享和完全透明的信息,这些信息存储在不可篡改的账本上,只能由获得许可的网络成员访问。区块链网络可跟踪订单、付款、帐户、生产等信息。由于成员之间共享单一可信视图,因此,您可采取端到端方式查看交易的所有细节,从而增强信心,提高效率并获得更多的新机会。

区块链的关键元素

分布式账本技术

所有网络参与者都有权访问分布式账本及其不可篡改的交易记录。 借助这个共享账本,交易只需记录一次,从而消除了传统业务网络中典型的重复工作。

不可篡改的记录

当交易被记录到共享账本之后,任何参与者都不能更改或篡改相关信息。 如果交易记录中有错误,则必须添加新交易才能撤消错误,这两个交易随后都是可视的。  

智能合约

为了加快交易速度,区块链上存储了一系列自动执行的规则,称为 "智能合约" 。 智能合约可以定义企业债券转让的条件,包括有关要支付的旅行保险的条款等等。

区块链如何运作

每个交易发生时,都会被记录为一个数据“区块”

这些交易表明资产的流动情况,资产可以是有形的(如产品),也可以是无形的(如知识产权)。 数据区块可以记录您选择的信息:人、事、时、地、数甚至条件(例如食品运输温度)。

每个区块都与其前后的区块连接

随着资产从一地移至另一地或所有权的变更,这些数据区块形成了数据链。 数据区块可以确认交易的确切时间和顺序,通过将数据区块安全地链接在一起,可以防止任何数据区块被篡改或在两个现有数据区块之间插入其他数据区块。

交易以区块形式组合成不可逆的链:区块链

每添加一个数据区块都会增强对前一个区块的验证,从而也增强对整条区块链的验证。 因此,篡改区块链很容易就会被发现,这也是不可篡改性的关键优势所在。 这不但消除了恶意人员进行篡改的可能性,还建立了您和其他网络成员可以信任的交易账本。

区块链技术的优点

需要改变的方面:运营人员常常在保留重复记录和执行第三方验证等方面浪费精力。 记录保存系统容易受到欺诈和网络攻击的威胁。 有限的透明度会延缓数据验证速度。 随着物联网的到来,交易量呈爆炸式激增。 所有这些因素都会影响开展业务的速度并侵蚀利润,因此我们需要更好的方法。 于是区块链闪亮登场。

更高的信任度

通过使用区块链技术,作为会员制网络中的一员,您可以确信自己收到准确、及时的数据,并且您的机密区块链记录只能与您特别授予访问权限的网络成员共享。

更高的安全性

所有的网络成员都需要就数据准确性达成共识,并且所有经过验证的交易都将永久记录在案,不可篡改。 没有人可以删除交易,即便是系统管理员也不例外。

更高的效率

通过在网络成员之间共享分布式账本,可避免在记录对账方面浪费时间。 为了加快交易速度,区块链上存储了一系列自动执行的规则,称为“智能合约”。

区块链基础知识五分钟简介

1

深入了解区块链技术的基础知识:数据块中如何包含代表任何有价值事物的数据,它们如何在不可篡改的数据链中按时间顺序连接在一起,以及区块链与比特币等加密货币之间有何差异。

2

了解区块链的分散性质如何使其有别于传统的记录保存,探索许可区块链在商业交易中的价值,以及区块链如何使信任和透明度达到新的水平。

3

食品行业只是通过区块链技术实现转型的行业之一。 了解如何在保护网络参与者数据的前提下,追溯食品的种植、收获、运输和加工的时间、地点和方式。

4

区块链之所以能建立信任,是因为它代表了真实的共享记录。每个人都能相信的数据将有助于推动其他新技术的发展,从而能大幅提高效率、透明度和置信度。

区块链网络的类型

可采用多种方式建立区块链网络。 它们可以是公有、私有、许可式区块链网络,或由联盟建立。

公有区块链网络

公有区块链是任何人都可以加入和参与的区块链,如比特币。 缺点可能包括需要大量计算能力,交易的私密性极低或根本没有私密性可言,以及安全性较弱。 而这些都是区块链的企业用例的重要考虑因素。  

私有区块链网络

私有区块链网络与公有区块链网络相似,也是分散的点对点网络。 但是,在私有区块链网络中,由一个组织负责管理网络,控制谁获准参与网络,并执行共识协议,维护共享账本。 这有助于显著提高参与者之间的信任和信心,具体取决于用例。 私有区块链可在企业防火墙后运行,甚至可在企业内部托管。

许可式区块链网络

建立私有区块链的企业通常也会建立许可式区块链网络。 需要注意的是,公有区块链网络也可以成为许可式网络。 这种模式对获准参与网络和执行特定交易的人员施加限制。 参与者需要获得邀请或许可才能加入。

联盟区块链

多个组织可以分担维护区块链的责任。 这些预先挑选的组织决定谁可以提交交易或访问数据。 如果所有参与者都必须获得许可才能参与,并且对区块链共担责任,那么对于企业而言,联盟区块链是理想之选。 

区块链安全性

区块链网络的风险管理系统

 

在构建企业区块链应用时,必须制定全面的安全战略,通过使用网络安全框架、保证服务以及最佳实践,缓解攻击和欺诈带来的风险。

了解有关区块链安全性的更多信息

区块链用例和应用

IBM Food Trust 通过从海洋一直到超市和餐馆全程跟踪捕捞的每一批海鲜,帮助 Raw Seafoods 增强整个食品供应链的信任度。

INBLOCK 发行了基于 Hyperledger Fabric 的 Metacoin 加密货币,旨在更迅速、更方便、更安全地开展数字资产交易。

利用区块链技术,实现变革性的医疗成果

IBM Blockchain Platform 帮助生态系统改变确保信任、数据来源和效率的方式,从而改善患者治疗和组织盈利能力。

阅读:实现变革性的医疗成果 (PDF, 188 KB)

了解 Golden State Foods 如何利用区块链的不可篡改性,跟踪供应链中的货物,帮助保障食品质量。

Vertrax 和 Chateau Software 推出了第一个基于 IBM Blockchain Platform 的多云区块链解决方案,旨在帮助防止大宗石油和天然气分销的供应链中断。

Home Depot 采用 IBM Blockchain 技术,获取有关发货和收货的共享可信信息,从而减少供应商争议并加速解决争议。

行业区块链

行业领军企业使用 IBM Blockchain 消除摩擦,建立信任,实现新的价值。 选择细分行业以了解详细信息。

供应链

医疗保健

政府

零售

媒体和广告

石油和天然气

电信

制造

保险

金融服务

旅游和交通运输 (PDF, 340 KB)

区块链常见问题解答

区块链和比特币有何区别?

比特币是一种不受监管的数字货币。 比特币使用区块链技术作为其交易账本。

这段视频说明了两者之间的差异。

IBM Blockchain Platform 与 Hyperledger 有何关系?

IBM Blockchain Platform 由 Hyperledger 技术提供支持。

这种区块链解决方案可以帮助任何开发人员顺利转变为区块链开发人员。

请访问 Hyperledger 网站以了解详细信息。

了解有关 Hyperledger 的更多信息

我可以在自己期望的任何云上进行部署吗?

IBM Blockchain Platform 软件经过优化处理,可以部署在 Red Hat 最先进的企业级 Kubernetes 平台 Red Hat® OpenShift® 之上。

这意味着您可以更灵活地选择在何处部署区块链网络组件,无论是本地、公有云还是混合云架构。

信息图:在自己选择的云环境中进行部署

我需要更多详细信息。 可从哪里获得?

如需更详细地了解区块链网络的运作方式以及使用方法,请阅读《分布式账本简介》(Introduction to Distributed Ledgers)。

学习 IBM Developer 上的区块链教程,了解更多信息

探索 IBM Blockchain Platform 的功能,这是唯一完全集成的企业级区块链平台,旨在帮助您加速多机构业务网络的开发、治理和运营。

立即注册,下载 IBM Blockchain Platform 白皮书 (PDF, 616 KB)

获取有关 Hyperledger Fabric 的详细信息,了解其独到之处、为何对业务网络至关重要以及如何开始使用。

访问 IBM Developer 上的 Hyperledger 页面

这份开发人员快速入门指南解释了如何使用 IBM Blockchain Platform Starter Plan 构建入门级区块链网络并开始编写代码。

查看开发人员快速入门指南

区块链解决方案

IBM Blockchain 解决方案

IBM Blockchain Platform 属于领先的 Hyperledger Fabric 平台。区块链创新者可充分利用这一平台,通过 Red Hat® OpenShift® 在任何计算环境中构建、运营、管理和发展区块链解决方案。

了解有关 IBM Blockchain Platform 的信息

区块链咨询

作为顶级区块链服务提供商,IBM Blockchain Services 拥有丰富的专业知识,可帮助您基于最佳技术构建强大的解决方案。超过 1,600 名区块链专家使用来自 100 多个实时网络的洞察,帮助您构建和发展。

了解有关区块链咨询的信息

所有 IBM Blockchain 解决方案

采用 IBM Blockchain 解决方案是区块链取得成功的最佳捷径。 IBM 融合了各种网络,使您能够轻松让其他成员加入,共同推动食品供应、供应链、贸易融资、金融服务、保险以及媒体和广告等领域的转型。

查看我们快速发展的区块链解决方案

区块链技术资源

通过艺术诠释区块链技术

我们请来五位对区块链技术知之甚少的艺术家,创作有关区块链主要优点的艺术作品。查看他们的作品,然后在我们最新网络研讨会系列 Blockparty 中,从 IBM 客户和业务合作伙伴那里了解更多信息。

区块链技术博客

网络上有关区块链技术的内容并不缺乏。但对于 100 多万的读者来说,IBM Blockchain Pulse 博客是区块链思想领导力和洞察分析最值得信赖的来源之一。

区块链技术播客

戴上耳机,通过聆听区块链创新者的知识来充实自我。了解区块链技术如何帮助个人重新获得对身份的控制权限、消除全球贫困和减少污染等难题。

区块链技术用例

通过了解创新者如何使用区块链技术 IBM Blockchain Platform 变革业务来获得启发。您可以加入现有的区块链网络,也可以与我们合作创建您自己的区块链网络。

客户成功案例

了解我们的客户如何运用 IBM Blockchain 区块链技术,对组织进行革新,从而获得切实可行的业务成果。

区块链技术后续步骤

浏览我们的参考指南,更深入地了解区块链的各个方面,包括运作方式、使用方法以及实施注意事项。

区块链技术主题

区块链技术的优点

智能合约

面向企业的区块链

区块链安全性

社会公益区块链

区块链和物联网

Hyperledger

什么是区块链,区块链的诞生,定义,核心技术,分类是什么? - 知乎

什么是区块链,区块链的诞生,定义,核心技术,分类是什么? - 知乎切换模式写文章登录/注册什么是区块链,区块链的诞生,定义,核心技术,分类是什么?sailman区块链的诞生  公认的最早关于区块链的描述见于中本聪所撰写的比特币白皮书,但在白皮书中并没有明确提出区块链的定义和概念(主要是在讨论比特币系统),“区块链”这个名词实际上是后来人们总结归纳后提出的。中本聪虽然没有直接提出区块链的概念,但比特币确实是第一个应用区块链技术的项目,可以说区块链是随着比特币的出现而诞生的。因此要讲区块链的诞生,就不得不从比特币的历史说起。  大家都知道比特币是中本聪在2008年提出的,但对其更早期的历史可能就不太清楚了。实际上比特币的诞生过程中,一个神秘团体起到了很大的作用,中本聪在设计比特币时大量借鉴了该社区的研究成果。这就是“密码朋克”(Cypherpunk),一个由密码学和计算机天才组成的交流小组。“密码朋克”的成员里可谓大咖云集,囊括了阿桑奇(维基解密创始人)、科恩(BT下载发明者)、伯纳斯·李(万维网发明者)等一众牛人,当然还有比特币发明者中本聪。  “密码朋克”提倡使用加密算法来保护个人隐私,反对政府和公司滥用个人数据,信仰自由主义。同时也是数字货币最早的传播者,在其电子邮件组中,常见关于数字货币的讨论,并有一些想法付诸实践。比如大卫·乔姆、亚当·贝克、戴伟、哈尔·芬尼等人在早期数字货币领域做出了大量的探索。比特币并不是数字货币的首次尝试。据统计,比特币诞生之前,失败的数字货币或支付系统多达数十个。正是这些探索为比特币的诞生提供了大量可借鉴的经验。  近三十年来,加密数字货币发展迅速,经历了多次演进,包括 e-Cash、HashCash、B-money 等。1983年,David Chaum最早提出e-Cash,并于1989年创建了Digicash公司。e-Cash是首个匿名化的数字加密货币。1997年,Adam Back发明了HashCash,以解决邮件系统中DoS 攻击问题。HashCash首次提出工作量证明机制(Proof of Work,PoW),该机制在日后的区块链项目中被广泛采用。1998年,Wei Dai提出了B-money,将PoW引入数字货币生成过程中。B-money可以算作去中心化数字货币的先驱,但是很遗憾的是,其最终未能设计落地。上面这些数字货币都或多或少的依赖于一个第三方系统的信用担保,很大程度上影响到了项目的成败。直到2008年比特币横空出世,将PoW与分布式存储、密码学、博弈论等结合在一起,首次从实践意义上实现了一套去中心化的数字货币系统。  比特币项目落地之后,吸引来了大量的挑战者和改进者。包括大量的竞争货币(山寨币)和底层技术平台(公链),这些在后面的文章会讲到。随着采用比特币底层技术的项目越来越多,慢慢就把“区块”和“链”这两个词合并起来变成一个词:“区块链”(BlockChain)。所以现在大家都用区块链来指代分布式存储、链式数据结构、非对称加密、共识算法、P2P网络等一系列技术的组合。 区块链的定义  那么区块链的准确定义是什么呢,Wikipedia上给出的说明比较冗长,简单归纳下:区块链是一种分布式数据库技术,通过维护数据块的链式结构,可以维持持续增长的,不可篡改的数据记录。当然笔者觉得维基百科这个释义是有些问题的,因为它更多的是强调区块链作为数据库的属性,而没有点明其核心价值,即以去中心化的方式解决多方互信和价值转移的问题。个人认为更好的定义应该是这样:区块链是一种去中心化的价值传输协议,通过共识来验证并记录数据,具有信息透明、可溯源和不可修改的特点。它由一系列技术组合而来,是制造信任、转移价值的底层基础设施。区块链的核心技术  区块链的核心技术包括:块链数据结构、分布式存储、非对称加密、共识算法、P2P网络、智能合约等。可以简化并抽象成五层技术架构。今天先简单解释下这些核心技术,后面的文章会深入挖掘技术背后的缘由和价值。  块链数据结构:将数据存储在一定容量的区块中,每个区块分为区块头和区块体(含交易数据)两个部分。区块头中包括前一区块的哈希值(PrevHash)和用于计算挖矿难度的随机数(Nonce);区块体则包含经过加密的具体交易信息。通过头哈希和时间戳将区块首尾连接起来,形成链条式的结构。分布式存储:网络中的每个节点都可以(不是一定)选择存储完整的数据,并依据出块情况对节点本地数据进行实时更新。  避免了中心化存储带来的安全和单点崩溃问题,同时结合共识机制来保证数据的一致性。非对称加密:包含两个密钥:公钥(publickey)和私钥(privatekey)。它们是成对存在的。公钥用来对数据进行加密和验签,私钥用来对数据进行解密和签名;一般公钥是公开的,私钥是自己保存,相对了传统的对称加密而言更具有安全性,是一种高级加密方式,常见的有RSA、ECDSA等。P2P网络:负责交易数据的网络传输和广播、节点发现和维护。网络中没有客户端或服务端的概念,只有平等的同级节点,每个节点既是客户端也是服务端。  信息会由发起节点开始向临近节点进行广播,收到信息的节点又会进行转发,从而实现指数级传播到全部网络节点。共识算法:也叫共识机制,主要用来解决各节点数据一致性和有效性问题。通过一套大家认可的验证方式对网络中的交易进行验证,验证通过后交易方可生效。同时也普遍作为发行Token的一种机制,常见的有POW、POS、DPOS、PBFT等算法。 智能合约:指的是一段写在区块链上的代码,一旦某个事件触发合约中的条款,代码即自动执行。其保证在没有第三方的情况下让参与方履行承诺(交易),履约过程是完全自动且不可逆转的。 区块链的分类  目前区块链主要可以分为三类,即公有链、联盟链和私有链。这是根据其开放(去中心化)程度来进行划分的,也是被大多数人认可的。  公有链:对所有人开放,任何人都可以参与的区块链,完全去中心化不受任何机构控制。其应用场景十分广泛,目前比较成熟的落地项目就是数字货币。 联盟链:被多个组织或个人构成的联盟控制,由指定节点进行共识验证的区块链,属于多中心化模式。主要应用于行业内多个机构之间的业务流转,例如供应链金融、商品溯源等。私有链:完全被单独的个人或某个组织控制记账权限的区块链,属于完全中心化模式。主要应用于企业内部的审计和数据管理等场景。  为什么会演变出上述的三种链,这里就不得不提到区块链领域的三元悖论(类似于蒙代尔三角),即区块链不可能同时满足去中心化、安全、高效这三个特性。必须弱化一者才能满足其它两点特性,而安全又是必须得到满足,于是人们只能在去中心化和高效当中进行取舍,逐步分化出了这三种类型的区块链。公有链实现了完全的去中心化和安全,所以性能上就比较差;联盟链为了商业应用,在安全的前提下要大幅提高性能,就不得不通过一个多中心授权的方式来管理节点,以提高共识效率,实现了多中心化;私有链考虑到内部使用的特点,把安全和效率做到了极致,所以必然依赖单个中心进行处理,实现了完全中心化。当然随着区块链技术的不断发展,三元悖论或许有被打破的可能,值得期待。区块链的应用场景  现在区块链技术还处于早期阶段,大量项目并未真正落地,但这波浪潮似乎已经不可阻挡。那么我们就来看看当前和未来可能落地区块链技术的应用场景吧。下面为大家总结了包括金融、物流、征信确权、物联网、资源共享、公益慈善、投票竞猜这七大典型应用领域。  金融领域:除了目前火热的数字货币之外,区块链在金融行业还有很多应用场景。比如证券交易结算、资产数字化、跨境支付、众筹投资和互助保险等,这些场景大多都是通过采用区块链技术来取缔中介方,以达到降低费用成本和提高处理效率的核心目的。物流领域:主要应用于供应链方面,基于区块链数据在交易各方之间的公开透明,供应链条可形成一个完整且流畅的信息流,帮助参与各方及时发现流程中存在的问题,进而提升供应链运转的整体效率。同时,利用区块链可追溯的特点,可以进行商品防伪和质量溯源,打击商品流通过程中假冒伪劣的问题。  征信确权:在征信领域采用区块链技术,既能提高征信的公信力(征信信息无法被篡改),还能显著降低征信成本,提供多维度的精准大数据。另外区块链技术还可以用于产权、版权等所有权的管理和追踪。利用数据不可篡改和不可伪造的特性, 可以在区块链网络上自由进行所有权的转移和交易。  物联网:当前的物联网环境中,所有的设备都需要通过云服务器连接,对中心化的网络管理架构依赖性较强,维护成本也随着物联网网络规模的扩大而显著增加。 采用区块链技术的话,可以使物联网体系中每个设备都作为一个独立节点运行,将计算和存储需求分散到全网各个节点中,有效防止网络中的任何单一节点故障或被攻击,所带来的整个网络崩溃和信息泄露的风险。 另外在工业物联网种,还可以动态掌握网络中各种生产制造设备的状态,提高设备的利用率和维护效率。  资源共享:相比于依然中间方的资源共享模式(Airbnb、Uber等),基于区块链的模式可以更直接地连接资源的供给方和需求方,其安全、透明、不可篡改的特性有助于减小摩擦。当然其效率在某些高频共享场景下会降低用户体验,但是对低频的场景确实非常适用,比如互助社区这种模式。发布于 2020-06-01 09:39区块链革命(书籍)区块链价值区块链(Blockchain)​赞同 1​​添加评论​分享​喜欢​收藏​申请

区块链技术的价值、挑战与展望 - 商业价值 - 《区块链技术指南 v1.0.1》 - 书栈网 · BookStack

区块链技术的价值、挑战与展望 - 商业价值 - 《区块链技术指南 v1.0.1》 - 书栈网 · BookStack

×

思维导图备注

关闭

区块链技术指南 v1.0.1

首页

白天

夜间

小程序

阅读

书签

我的书签

添加书签

移除书签

商业价值

 赞助作者

 来源:Baohua Yang

浏览 1468

扫码

分享

2019-11-16 11:04:12

商业价值商业价值现代商业的典型模式为,交易方通过协商和执行合约,完成交易过程。区块链擅长的正是如何管理合约,确保合约的顺利执行。

根据类别和应用场景不同,区块链所体现的特点和价值也不同。

从技术特点上,区块链一般被认为具有:

分布式容错性:网络极其鲁棒,容错 1/3 左右节点的异常状态。不可篡改性:一致提交后的数据会一直存在,不可被销毁或修改。隐私保护性:密码学保证了未经授权者能访问到数据,但无法解析。

随之带来的业务特性将可能包括:

可信任性:区块链技术可以提供天然可信的分布式账本平台,不需要额外第三方中介机构。 降低成本:跟传统技术相比,区块链技术可能带来更短的时间、更少的人力和维护成本。增强安全:区块链技术将有利于安全可靠的审计管理和账目清算,减少犯罪可能性,和各种风险。

区块链并非凭空诞生的新技术,更像是技术演化到一定程度突破应用阈值后的产物,因此,其商业应用场景也跟促生其出现的环境息息相关。基于区块链技术,任何基于数字交易的活动成本和追踪成本都会降低,并且能提高安全性。笔者认为,能否最终带来成本的降低,将是一项技术能否被深入应用的关键。

笔者认为,所有跟信息、价值(包括货币、证券、专利、版权、数字商品、实际物品等)、信用等相关的交换过程,都将可能从区块链技术中得到启发或直接受益。但这个过程绝不是一蹴而就的,可能经过较长时间的探索和论证

目前,区块链技术已经得到了众多金融机构和商业公司的关注。

已经对区块链技术进行投入或应用的金融机构(排名不分先后)目前有:

Visa美国纳斯达克证券交易所(Nasdaq)高盛投资银行(Goldman Sachs)花旗银行(citibank)美国富国银行(Wells Fargo)中国央行中国浦发银行日本三菱日联金融集团瑞士联合银行德意志银行DTCC全球同业银行金融电讯协会(SWIFT)

部分商业、技术公司包括:

IBM微软Intel思科(Cisco)埃森哲

当前内容版权归 Baohua Yang 或其关联方所有,如需对内容或内容相关联开源项目进行关注与资助,请访问 Baohua Yang .

上一篇:

下一篇:

【重要】最新版本看这里SUMMARY前言修订记录如何贡献区块链思想的诞生与概念从数字货币说起比特币:前所未有的社会学实验区块链核心概念账本科技的演化从区块链到分布式账本小结区块链技术的价值、挑战与展望商业价值关键技术和挑战趋势与展望小结 典型应用场景金融服务征信和权属管理资源共享投资管理物联网与供应链其它场景小结分布式系统核心问题一致性问题共识算法FLP 不可能性原理CAP 原理ACID 原则Paxos 与 Raft拜占庭问题与算法可靠性指标小结密码学与安全技术Hash 算法与摘要加解密算法数字签名数字证书PKI 体系Merkle 树同态加密其它问题小结比特币项目 — 思想诞生的摇篮简介原理和设计挖矿工具共识机制闪电网络侧链小结Ethereum(以太坊)— 技术落地的实验简介安装相关工具协议设计智能合约示例一小结Hyperledger(超级账本)— 商用分布式账本诞生与发展社区组织五大顶级项目开发和提交代码小结Fabric 部署与管理简介使用 Fabric 1.0 版本Fabric v0.6安装部署使用 chaincode权限管理Python 客户端网络拓扑小结区块链应用开发简介链上代码工作原理物流供应链简单案例示例一:信息公证示例二:交易资产示例三:数字货币发行与管理示例四:学历认证示例五:社区能源共享小结Fabric 架构与设计简介链上代码架构设计消息协议小结区块链服务平台设计简介IBM Bluemix 云区块链服务微软 Azure 云区块链服务使用超级账本 Cello 搭建区块链服务本章小结性能与评测简介Hyperledger Fabric v0.6小结附录术语常见问题相关组织ProtoBuf 与 gRPC参考资源链接

暂无相关搜索结果!

本文档使用 BookStack 构建

×

分享,让知识传承更久远

取消分享

×

文章二维码

手机扫一扫,轻松掌上读

关闭

×

文档下载

普通下载

下载码下载(免登录无限下载)

你与大神的距离,只差一个APP

请下载您需要的格式的文档,随时随地,享受汲取知识的乐趣!

PDF文档

EPUB文档

MOBI文档

温馨提示 每天每在网站阅读学习一分钟时长可下载一本电子书,每天连续签到可增加阅读时长

下载码方式下载:免费、免登录、无限制。 免费获取下载码

下载码

  文档格式

PDF

EPUB

MOBI

码上下载

关闭窗口

×

微信小程序阅读

您与他人的薪资差距,只差一个随时随地学习的小程序

关闭窗口

×

书签列表

关闭

×

阅读记录

阅读进度: 0.00% ( 0/0 )

重置阅读进度

关闭

区块链与人工智能 (AI) | IBM

区块链与人工智能 (AI) | IBM

区块链与人工智能 (AI)

区块链和 AI 的融合为业务带来新价值

定义区块链和 AI

区块链 是一种共享的、不可变的分类账,可在多方发起和完成交易时,同时向他们提供即时、共享和透明的加密数据交换。 区块链网络可以跟踪订单、付款、帐户和生产等等。 由于获得许可的成员对事实有着统一的看法,因此他们在与其他企业的交易中获得了信心和信任,并提高了效率,创造了新的商机。 

什么是区块链? 

人工智能 利用计算机、数据,有时甚至是机器来模拟人类思维的解决问题能力和决策能力。 它还包含机器学习和深度学习这些子领域,它们使用基于数据训练的 AI 算法进行预测或分类,并随着时间的推移越来越智能。 AI 的好处包括实现了重复性任务的自动化、改善了决策制定,并创造了更完善的客户体验。 

什么是 AI? 

区块链与 AI 价值的结合

真实性

区块链的数字记录提供了对 AI 背后框架及其所使用数据来源的洞察,解决了可解释 AI 的挑战。 这有助于增进对数据完整性的信任,进而也增加了对 AI 所提供建议的信任。 使用区块链来存储和分发 AI 模型提供了审计跟踪,而区块链和 AI 配对使用则可以增强数据安全性。 

增强功能

AI 能够以惊人的速度快速而全面地读取、理解和关联数据,为基于区块链的业务网络带来新的智能水平。 通过提供对企业内外大量数据的访问,区块链可帮助 AI 实现扩展,提供更多可行洞察、管理数据使用和模型共享,并创建值得信赖的透明数据经济。

自动化

AI、自动化和区块链可以为跨越多方的业务流程带来新的价值,即消除摩擦、加快速度和提高效率。 例如,在区块链上执行的智能合约中嵌入的 AI 模型可以推荐要召回的过期产品、执行交易(例如,根据设定的阈值和事件重新订购、付款或购买股票)、解决争议,并选择最可持续的运输方法。 

区块链和 AI 用例

在各行各业,将 AI 引入区块链都为人们带来了新的机遇

医疗保健

从呈现治疗洞察和支持用户需求到从患者数据中识别洞察和揭示模式,AI  几乎可以帮助推动医疗保健行业的各个领域。 通过区块链上的患者数据 ,包括电子健康记录,企业可以共同努力改善护理水平,同时保护患者隐私。

阅读有关患者数据和区块链的博客

生命科学

制药行业的区块链和 AI 可以提升药品供应链的可见性和可追溯性 ,同时显著提高临床试验的成功率。 通过将高级数据分析与分散的临床试验框架相结合,可实现数据完整性、透明度、患者跟踪、同意管理以及试验参与和数据收集的自动化。

阅读有关医疗保健和生命科学的白皮书

金融服务

通过实现信任、消除多方交易中的摩擦和加快交易速度,区块链和 AI 正在彻底改变金融服务 行业。 思考一下贷款流程。 申请人授予许可,允许访问区块链上存储的个人记录。 对用于评估申请的数据和自动化流程的信任,有助于加快结束速度并提高客户满意度。

阅读关于金融科技和智能合约的博客

供应链

通过让主要基于纸张的流程实现数字化,使数据可共享且值得信赖,并增加智能和自动化功能来执行交易,AI 和区块链正在彻底改变各行各业的供应链并制造新的商机。 例如,制造商可以在产品或部件级别跟踪碳排放数据,提高脱碳工作的准确性和智能性。

阅读医疗保健行业入门相关博客

阅读贸易金融和区块链相关博客

成功案例

IPwe 使用 AI 和区块链来发现和交易 IP

IPwe 创建了 Global Patent Registry (GPR),这是世界上第一个由区块链驱动的专利平台,用于管理知识产权,为买卖双方提高可见性和灵活性。

了解如何提高 IP 的透明度和流动性

Heifer International 和 IBM 帮助咖啡和可可种植者

来自 IBM Food Trust 的区块链技术和来自 IBM Watson Decision Platform for Agriculture 的强大 AI 功能正在改进农场层面的决策并加快交易速度。

了解供应链洞察如何帮助农民提高价格

入门

区块链解决方案

您可以通过为供应链、全球贸易、国际支付、食品供应等带来革命性的信任和透明度,加入已经在彻底改变行业的区块链网络。

查看 IBM Blockchain 解决方案

IBM Blockchain Services

携手行业领先的区块链服务提供者共同创造。 我们可以帮助您建立以最佳技术为支撑的可扩展业务网络。

探索区块链咨询

如何开始使用 IBM Blockchain

无论您的区块链旅程进展如何,我们都能助您一臂之力。 加入现有网络、建立您自己的网络、与我们共同创造或与他人合作,让您的企业目标顺利开花结果。

立即开始

相关解决方案

人工智能 (AI) 服务和咨询

创建智能工作流程,利用 AI、数据和分析,将 AI 愿望转化为切实的业务成果。

探索 AI 服务和咨询

TradeLens

通过摆脱传统数据系统、手动文档处理和糟糕的可视性,变革集装箱物流。

探索集装箱物流解决方案

行业区块链

借助 IBM Blockchain 的强大功能,消除摩擦,建立信任并在企业和行业中释放新价值。 我们一起解决什么问题?

探索区块链行业解决方案

资源

什么是医疗保健领域的人工智能?

了解医疗机构如何利用 AI 解决方案做出明智的决策并改善数据体验。

如何利用区块链技术建立对 AI 的信任

阅读了解区块链如何帮助 IBM 客户解决人工智能中的数据完整性问题。

获取有关区块链的最新想法

从数十个博客中选择您的主题,其中包含来自整个区块链社区的重要对话、案例和意见。

后续步骤

浏览我们的参考指南,更深入地了解区块链的各个方面,包括工作方式、使用方法以及实施注意事项。

区块链主题

什么是区块链

区块链的优点

智能合同

面向商业的区块链

区块链安全性

Blockchain for good

区块链和物联网

Hyperledger

区块链技术研究综述:原理、进展与应用

区块链技术研究综述:原理、进展与应用

主管单位:中国科学技术协会

主办单位:中国通信学会

ISSN 1000-436X    CN 11-2102/TN

首页

期刊简介

编委会

投稿指南

道德声明

期刊协议

期刊订阅

会议活动

下载中心

联系我们

English

期刊介绍

期刊信息

投稿须知

稿件格式要求

审稿流程

下载中心

联系方式

Toggle navigation

首页

期刊简介

期刊介绍

期刊信息

编委会

投稿指南

投稿须知

稿件格式要求

审稿流程

下载中心

道德声明

期刊协议

期刊订阅

会议活动

联系我们

English

通信学报, 2020, 41(1): 134-151 doi: 10.11959/j.issn.1000-436x.2020027

综述

区块链技术研究综述:原理、进展与应用

曾诗钦1, 霍如2,3, 黄韬1,3, 刘江1,3, 汪硕1,3, 冯伟4

1 北京邮电大学网络与交换国家重点实验室,北京 100876

2 北京工业大学北京未来网络科技高精尖创新中心,北京 100124

3 网络通信与安全紫金山实验室,江苏 南京 211111

4 工业和信息化部信息化和软件服务业司,北京 100846

Survey of blockchain:principle,progress and application

ZENG Shiqin1, HUO Ru2,3, HUANG Tao1,3, LIU Jiang1,3, WANG Shuo1,3, FENG Wei4

1 State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China

2 Beijing Advanced Innovation Center for Future Internet Technology,Beijing University of Technology,Beijing 100124,China

3 Purple Mountain Laboratories,Nanjing 211111,China

4 Department of Information Technology Application and Software Services,Beijing 100846,China

通讯作者: 霍如,huoru@bjut.edu.cn

修回日期: 2019-12-12  

网络出版日期: 2020-01-25

基金资助:

国家高技术研究发展计划(“863”计划)基金资助项目.  2015AA015702未来网络操作系统发展战略研究基金资助项目.  2019-XY-5

Revised: 2019-12-12  

Online: 2020-01-25

Fund supported:

The National High Technology Research and Development Program of China (863 Program).  2015AA015702The Development Strategy Research of Future Network Operating System.  2019-XY-5

作者简介 About authors

曾诗钦(1995-),男,广西南宁人,北京邮电大学博士生,主要研究方向为区块链、标识解析技术、工业互联网

霍如(1988-),女,黑龙江哈尔滨人,博士,北京工业大学讲师,主要研究方向为计算机网络、信息中心网络、网络缓存策略与算法、工业互联网、标识解析技术等。

黄韬(1980-),男,重庆人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化等。

刘江(1983-),男,河南郑州人,博士,北京邮电大学教授,主要研究方向为未来网络体系架构、软件定义网络、网络虚拟化、信息中心网络等。

汪硕(1991-),男,河南灵宝人,博士,北京邮电大学在站博士后,主要研究方向为数据中心网络、软件定义网络、网络流量调度等。

冯伟(1980-),男,河北邯郸人,博士,工业和信息化部副研究员,主要研究方向为工业互联网平台、数字孪生、信息化和工业化融合发展关键技术等

摘要

区块链是一种分布式账本技术,依靠智能合约等逻辑控制功能演变为完整的存储系统。其分类方式、服务模式和应用需求的变化导致核心技术形态的多样性发展。为了完整地认知区块链生态系统,设计了一个层次化的区块链技术体系结构,进一步深入剖析区块链每层结构的基本原理、技术关联以及研究进展,系统归纳典型区块链项目的技术选型和特点,最后给出智慧城市、工业互联网等区块链前沿应用方向,提出区块链技术挑战与研究展望。

关键词:

区块链

;

加密货币

;

去中心化

;

层次化技术体系结构

;

技术多样性

;

工业区块链

Abstract

Blockchain is a kind of distributed ledger technology that upgrades to a complete storage system by adding logic control functions such as intelligent contracts.With the changes of its classification,service mode and application requirements,the core technology forms of Blockchain show diversified development.In order to understand the Blockchain ecosystem thoroughly,a hierarchical technology architecture of Blockchain was proposed.Furthermore,each layer of blockchain was analyzed from the perspectives of basic principle,related technologies and research progress in-depth.Moreover,the technology selections and characteristics of typical Blockchain projects were summarized systematically.Finally,some application directions of blockchain frontiers,technology challenges and research prospects including Smart Cities and Industrial Internet were given.

Keywords:

blockchain

;

cryptocurrency

;

decentralization

;

hierarchical technology architecture

;

technology diversity

;

PDF (1174KB)

元数据

多维度评价

相关文章

导出

EndNote|

Ris|

Bibtex

 收藏本文

本文引用格式

曾诗钦, 霍如, 黄韬, 刘江, 汪硕, 冯伟. 区块链技术研究综述:原理、进展与应用. 通信学报[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027

ZENG Shiqin. Survey of blockchain:principle,progress and application. Journal on Communications[J], 2020, 41(1): 134-151 doi:10.11959/j.issn.1000-436x.2020027

1 引言

2008年,中本聪提出了去中心化加密货币——比特币(bitcoin)的设计构想。2009年,比特币系统开始运行,标志着比特币的正式诞生。2010—2015 年,比特币逐渐进入大众视野。2016—2018年,随着各国陆续对比特币进行公开表态以及世界主流经济的不确定性增强,比特币的受关注程度激增,需求量迅速扩大。事实上,比特币是区块链技术最成功的应用场景之一。伴随着以太坊(ethereum)等开源区块链平台的诞生以及大量去中心化应用(DApp,decentralized application)的落地,区块链技术在更多的行业中得到了应用。

由于具备过程可信和去中心化两大特点,区块链能够在多利益主体参与的场景下以低成本的方式构建信任基础,旨在重塑社会信用体系。近两年来区块链发展迅速,人们开始尝试将其应用于金融、教育、医疗、物流等领域。但是,资源浪费、运行低效等问题制约着区块链的发展,这些因素造成区块链分类方式、服务模式和应用需求发生快速变化,进一步导致核心技术朝多样化方向发展,因此有必要采取通用的结构分析区块链项目的技术路线和特点,以梳理和明确区块链的研究方向。

区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值。袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势。上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析。本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望。

2 相关概念

随着区块链技术的深入研究,不断衍生出了很多相关的术语,例如“中心化”“去中心化”“公链”“联盟链”等。为了全面地了解区块链技术,并对区块链技术涉及的关键术语有系统的认知,本节将给出区块链及其相关概念的定义,以及它们的联系,更好地区分易使人混淆的术语。

2.1 中心化与去中心化

中心化(centralization)与去中心化(decentralization)最早用来描述社会治理权力的分布特征。从区块链应用角度出发,中心化是指以单个组织为枢纽构建信任关系的场景特点。例如,电子支付场景下用户必须通过银行的信息系统完成身份验证、信用审查和交易追溯等;电子商务场景下对端身份的验证必须依靠权威机构下发的数字证书完成。相反,去中心化是指不依靠单一组织进行信任构建的场景特点,该场景下每个组织的重要性基本相同。

2.2 加密货币

加密货币(cryptocurrency)是一类数字货币(digital currency)技术,它利用多种密码学方法处理货币数据,保证用户的匿名性、价值的有效性;利用可信设施发放和核对货币数据,保证货币数量的可控性、资产记录的可审核性,从而使货币数据成为具备流通属性的价值交换媒介,同时保护使用者的隐私。

加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示。

图1

新窗口打开|

下载原图ZIP|

生成PPT

图1  

“electronic cash”交易模型

交易开始前,付款者使用银行账户兑换加密货币,然后将货币数据发送给领款者,领款者向银行发起核对请求,若该数据为银行签发的合法货币数据,那么银行将向领款者账户记入等额数值。通过盲签名技术,银行完成对货币数据的认证,而无法获得发放货币与接收货币之间的关联,从而保证了价值的有效性、用户的匿名性;银行天然具有发放币种、账户记录的能力,因此保证了货币数量的可控性与资产记录的可审核性。

最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点。此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值。比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币。区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一。

2.3 区块链及工作流程

一般认为,区块链是一种融合多种现有技术的新型分布式计算和存储范式。它利用分布式共识算法生成和更新数据,并利用对等网络进行节点间的数据传输,结合密码学原理和时间戳等技术的分布式账本保证存储数据的不可篡改,利用自动化脚本代码或智能合约实现上层应用逻辑。如果说传统数据库实现数据的单方维护,那么区块链则实现多方维护相同数据,保证数据的安全性和业务的公平性。区块链的工作流程主要包含生成区块、共识验证、账本维护3个步骤。

1) 生成区块。区块链节点收集广播在网络中的交易——需要记录的数据条目,然后将这些交易打包成区块——具有特定结构的数据集。

2) 共识验证。节点将区块广播至网络中,全网节点接收大量区块后进行顺序的共识和内容的验证,形成账本——具有特定结构的区块集。

3) 账本维护。节点长期存储验证通过的账本数据并提供回溯检验等功能,为上层应用提供账本访问接口。

2.4 区块链类型

根据不同场景下的信任构建方式,可将区块链分为2类:非许可链(permissionless blockchain)和许可链(permissioned blockchain)。

非许可链也称为公链(public blockchain),是一种完全开放的区块链,即任何人都可以加入网络并参与完整的共识记账过程,彼此之间不需要信任。公链以消耗算力等方式建立全网节点的信任关系,具备完全去中心化特点的同时也带来资源浪费、效率低下等问题。公链多应用于比特币等去监管、匿名化、自由的加密货币场景。

许可链是一种半开放式的区块链,只有指定的成员可以加入网络,且每个成员的参与权各有不同。许可链往往通过颁发身份证书的方式事先建立信任关系,具备部分去中心化特点,相比于非许可链拥有更高的效率。进一步,许可链分为联盟链(consortium blockchain)和私链(fully private blockchain)。联盟链由多个机构组成的联盟构建,账本的生成、共识、维护分别由联盟指定的成员参与完成。在结合区块链与其他技术进行场景创新时,公链的完全开放与去中心化特性并非必需,其低效率更无法满足需求,因此联盟链在某些场景中成为实适用性更强的区块链选型。私链相较联盟链而言中心化程度更高,其数据的产生、共识、维护过程完全由单个组织掌握,被该组织指定的成员仅具有账本的读取权限。

3 区块链体系结构

根据区块链发展现状,本节将归纳区块链的通用层次技术结构、基本原理和研究进展。

现有项目的技术选型多数由比特币演变而来,所以区块链主要基于对等网络通信,拥有新型的基础数据结构,通过全网节点共识实现公共账本数据的统一。但是区块链也存在效率低、功耗大和可扩展性差等问题,因此人们进一步以共识算法、处理模型、交易模式创新为切入点进行技术方案改进,并在此基础上丰富了逻辑控制功能和区块链应用功能,使其成为一种新型计算模式。本文给出如图2 所示的区块链通用层次化技术结构,自下而上分别为网络层、数据层、共识层、控制层和应用层。其中,网络层是区块链信息交互的基础,承载节点间的共识过程和数据传输,主要包括建立在基础网络之上的对等网络及其安全机制;数据层包括区块链基本数据结构及其原理;共识层保证节点数据的一致性,封装各类共识算法和驱动节点共识行为的奖惩机制;控制层包括沙盒环境、自动化脚本、智能合约和权限管理等,提供区块链可编程特性,实现对区块数据、业务数据、组织结构的控制;应用层包括区块链的相关应用场景和实践案例,通过调用控制合约提供的接口进行数据交互,由于该层次不涉及区块链原理,因此在第 5节中单独介绍。

3.1 网络层

网络层关注区块链网络的基础通信方式——对等(P2P,peer-to-peer)网络。对等网络是区别于“客户端/服务器”服务模式的计算机通信与存储架构,网络中每个节点既是数据的提供者也是数据的使用者,节点间通过直接交换实现计算机资源与信息的共享,因此每个节点地位均等。区块链网络层由组网结构、通信机制、安全机制组成。其中组网结构描述节点间的路由和拓扑关系,通信机制用于实现节点间的信息交互,安全机制涵盖对端安全和传输安全。

图2

新窗口打开|

下载原图ZIP|

生成PPT

图2  

区块链层次化技术结构

1) 组网结构

对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示。

图3

新窗口打开|

下载原图ZIP|

生成PPT

图3  

区块链组网结构

无结构对等网络是指网络中不存在特殊中继节点、节点路由表的生成无确定规律、网络拓扑呈现随机图状的一类对等网络。该类网络结构松散,设计简洁,具有良好的容错性和匿名性,但由于采用洪泛机制作为信息传播方式,其可扩展性较差。典型的协议有Gnutella等。

结构化对等网络是指网络中不存在特殊中继节点、节点间根据特定算法生成路由表、网络拓扑具有严格规律的一类对等网络。该类网络实现复杂但可扩展性良好,通过结构化寻址可以精确定位节点从而实现多样化功能。常见的结构化网络以DHT (distributed hash table)网络为主,典型的算法有Chord、Kademlia等。

混合式对等网络是指节点通过分布式中继节点实现全网消息路由的一类对等网络。每个中继节点维护部分网络节点地址、文件索引等工作,共同实现数据中继的功能。典型的协议有Kazza等。

2) 通信机制

通信机制是指区块链网络中各节点间的对等通信协议,建立在 TCP/UDP 之上,位于计算机网络协议栈的应用层,如图4所示。该机制承载对等网络的具体交互逻辑,例如节点握手、心跳检测、交易和区块传播等。由于包含的协议功能不同(例如基础链接与扩展交互),本文将通信机制细分为3个层次:传播层、连接层和交互逻辑层。

传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播。单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播。连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability)。具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等。交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路。

图4

新窗口打开|

下载原图ZIP|

生成PPT

图4  

区块链网络通信机制

3) 安全机制

安全是每个系统必须具备的要素,以比特币为代表的非许可链利用其数据层和共识层的机制,依靠消耗算力的方式保证数据的一致性和有效性,没有考虑数据传输过程的安全性,反而将其建立在不可信的透明P2P网络上。随着隐私保护需求的提出,非许可链也采用了一些网络匿名通信方法,例如匿名网络Tor(the onion router)通过沿路径的层层数据加密机制来保护对端身份。许可链对成员的可信程度有更高的要求,在网络层面采取适当的安全机制,主要包括身份安全和传输安全两方面。身份安全是许可链的主要安全需求,保证端到端的可信,一般采用数字签名技术实现,对节点的全生命周期(例如节点交互、投票、同步等)进行签名,从而实现许可链的准入许可。传输安全防止数据在传输过程中遭到篡改或监听,常采用基于TLS的点对点传输和基于Hash算法的数据验证技术。

4) 研究现状

目前,区块链网络层研究主要集中在3个方向:测量优化、匿名分析与隐私保护、安全防护。

随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络。Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法。Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动。Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡。

匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害。Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击。

区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击。为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案。Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性。Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能。

3.2 数据层

区块链中的“块”和“链”都是用来描述其数据结构特征的词汇,可见数据层是区块链技术体系的核心。区块链数据层定义了各节点中数据的联系和组织方式,利用多种算法和机制保证数据的强关联性和验证的高效性,从而使区块链具备实用的数据防篡改特性。除此之外,区块链网络中每个节点存储完整数据的行为增加了信息泄露的风险,隐私保护便成为迫切需求,而数据层通过非对称加密等密码学原理实现了承载应用信息的匿名保护,促进区块链应用普及和生态构建。因此,从不同应用信息的承载方式出发,考虑数据关联性、验证高效性和信息匿名性需求,可将数据层关键技术分为信息模型、关联验证结构和加密机制3类。

1) 信息模型

区块链承载了不同应用的数据(例如支付记录、审计数据、供应链信息等),而信息模型则是指节点记录应用信息的逻辑结构,主要包括UTXO (unspent transaction output)、基于账户和键值对模型3种。需要说明的是,在大部分区块链网络中,每个用户均被分配了交易地址,该地址由一对公私钥生成,使用地址标识用户并通过数字签名的方式检验交易的有效性。

UTXO是比特币交易中的核心概念,逐渐演变为区块链在金融领域应用的主要信息模型,如图5所示。每笔交易(Tx)由输入数据(Input)和输出数据(Output)组成,输出数据为交易金额(Num)和用户公钥地址(Adr),而输入数据为上一笔交易输出数据的指针(Pointer),直到该比特币的初始交易由区块链网络向节点发放。

图5

新窗口打开|

下载原图ZIP|

生成PPT

图5  

UTXO信息模型

基于账户的信息模型以键值对的形式存储数据,维护着账户当前的有效余额,通过执行交易来不断更新账户数据。相比于UTXO,基于账户的信息模型与银行的储蓄账户类似,更直观和高效。

不管是UTXO还是基于账户的信息模型,都建立在更为通用的键值对模型上,因此为了适应更广泛的应用场景,键值对模型可直接用于存储业务数据,表现为表单或集合形式。该模型利于数据的存取并支持更复杂的业务逻辑,但是也存在复杂度高的问题。

2) 关联验证结构

区块链之所以具备防篡改特性,得益于链状数据结构的强关联性。该结构确定了数据之间的绑定关系,当某个数据被篡改时,该关系将会遭到破坏。由于伪造这种关系的代价是极高的,相反检验该关系的工作量很小,因此篡改成功率被降至极低。链状结构的基本数据单位是“区块(block)”,基本内容如图6所示。

图6

新窗口打开|

下载原图ZIP|

生成PPT

图6  

基本区块结构

区块由区块头(Header)和区块体(Body)两部分组成,区块体包含一定数量的交易集合;区块头通过前继散列(PrevHash)维持与上一区块的关联从而形成链状结构,通过MKT(MerkleTree)生成的根散列(RootHash)快速验证区块体交易集合的完整性。因此散列算法和 MKT 是关联验证结构的关键,以下将对此展开介绍。

散列(Hash)算法也称为散列函数,它实现了明文到密文的不可逆映射;同时,散列算法可以将任意长度的输入经过变化得到固定长度的输出;最后,即使元数据有细微差距,变化后的输出也会产生显著不同。利用散列算法的单向、定长和差异放大的特征,节点通过比对当前区块头的前继散列即可确定上一区块内容的正确性,使区块的链状结构得以维系。区块链中常用的散列算法包括SHA256等。

MKT包括根散列、散列分支和交易数据。MKT首先对交易进行散列运算,再对这些散列值进行分组散列,最后逐级递归直至根散列。MKT 带来诸多好处:一方面,对根散列的完整性确定即间接地实现交易的完整性确认,提升高效性;另一方面,根据交易的散列路径(例如 Tx1:Hash2、Hash34)可降低验证某交易存在性的复杂度,若交易总数为N,那么MKT可将复杂度由N降为lbN。除此之外,还有其他数据结构与其配合使用,例如以太坊通过MPT(Merkle Patricia tree)——PatriciaTrie 和MerkleTree混合结构,高效验证其基于账户的信息模型数据。

此外,区块头中还可根据不同项目需求灵活添加其他信息,例如添加时间戳为区块链加入时间维度,形成时序记录;添加记账节点标识,以维护成块节点的权益;添加交易数量,进一步提高区块体数据的安全性。

3) 加密机制

由上述加密货币原理可知,经比特币演变的区块链技术具备与生俱来的匿名性,通过非对称加密等技术既保证了用户的隐私又检验了用户身份。非对称加密技术是指加密者和解密者利用2个不同秘钥完成加解密,且秘钥之间不能相互推导的加密机制。常用的非对称加密算法包括 RSA、Elgamal、背包算法、Rabin、D-H、ECC(椭圆曲线加密算法)等。对应图5,Alice 向 Bob 发起交易 Tx2,Alice使用Bob的公钥对交易签名,仅当Bob使用私钥验证该数字签名时,才有权利创建另一笔交易,使自身拥有的币生效。该机制将公钥作为基础标识用户,使用户身份不可读,一定程度上保护了隐私。

4) 研究现状

数据层面的研究方向集中在高效验证、匿名分析、隐私保护3个方面。

高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种。为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究。Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程。Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销。

区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接。Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度。Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址。Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率。

隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私。Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性。非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成。

3.3 共识层

区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测。因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题。实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究。

状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论。其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态。假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性。同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息。状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议。其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同。学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题。

区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议。PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议。它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等。CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议。

非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别。具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识。许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]。

限于篇幅原因,本节仅以 PoW、PBFT、Raft为切入进行3类协议的分析。

1) PoX类协议

PoW也称为Nakamoto协议,是比特币及其衍生项目使用的核心共识协议,如图7所示。

图7

新窗口打开|

下载原图ZIP|

生成PPT

图7  

PoW协议示意

该协议在区块链头结构中加入随机数Nonce,并设计证明依据:为生成新区块,节点必须计算出合适的 Nonce 值,使新生成的区块头经过双重SHA256 运算后小于特定阈值。该协议的整体流程为:全网节点分别计算证明依据,成功求解的节点确定合法区块并广播,其余节点对合法区块头进行验证,若验证无误则与本地区块形成链状结构并转发,最终达到全网共识。PoW是随机性协议,任何节点都有可能求出依据,合法区块的不唯一将导致生成分支链,此时节点根据“最长链原则”选择一定时间内生成的最长链作为主链而抛弃其余分支链,从而使各节点数据最终收敛。

PoW协议采用随机性算力选举机制,实现拜占庭容错的关键在于记账权的争夺,目前寻找证明依据的方法只有暴力搜索,其速度完全取决于计算芯片的性能,因此当诚实节点数量过半,即“诚实算力”过半时,PoW便能使合法分支链保持最快的增长速度,也即保证主链一直是合法的。PoW是一种依靠饱和算力竞争纠正拜占庭错误的共识协议,关注区块产生、传播过程中的拜占庭容错,在保证防止双花攻击的同时也存在资源浪费、可扩展性差等问题。

2) BFT类协议

PBFT是 BFT经典共识协议,其主要流程如图8 所示。PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f。PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]。

图8

新窗口打开|

下载原图ZIP|

生成PPT

图8  

PBFT协议示意

PBFT 协议解决消息传播过程的拜占庭容错,由于算法复杂度为 O(n2)且存在确定性的主节点选举规则,PBFT 仅适用于节点数量少的小型许可链系统。

3) CFT类协议

Raft[37]是典型的崩溃容错共识协议,以可用性强著称。Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作。当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步。节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复。

Raft协议实现崩溃容错的关键在于领导节点的自选举机制,部分许可链选择降低可信需求,将拜占庭容错转换为崩溃容错,从而提升共识速度。

4) 奖惩机制

奖惩机制包括激励机制与惩罚策略,其中激励机制是为了弥补节点算力消耗、平衡协议运行收益比的措施,当节点能够在共识过程中获得收益时才会进行记账权的争夺,因此激励机制利用经济效益驱动各共识协议可持续运行。激励机制一般基于价值均衡理论设计,具有代表性的机制包括PPLNS、PPS等。为了实现收益最大化,节点可能采用不诚实的运行策略(如扣块攻击、自私挖矿等),损害了诚实节点的利益,惩罚策略基于博弈论等理论对节点进行惩罚,从而纠正不端节点的行为,维护共识可持续性。

5) 研究现状

随着可扩展性和性能需求的多样化发展,除了传统的BFT、CFT协议和PoX协议衍生研究,还产生了混合型协议(Hybrid)——主要为 PoX类协议混合以及PoX-BFT协议混合。因此本节从PoX类、BFT类以及Hybrid类协议归纳共识层研究进展。

如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错。uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费。PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块。PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举。Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性。PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用。

BFT协议有较长的发展史,在区块链研究中被赋予了新的活力。SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识。Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性。HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致。LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能。

Hybrid 类协议是研究趋势之一。PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享。PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力。ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延。Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份。

3.4 控制层

区块链节点基于对等通信网络与基础数据结构进行区块交互,通过共识协议实现数据一致,从而形成了全网统一的账本。控制层是各类应用与账本产生交互的中枢,如果将账本比作数据库,那么控制层提供了数据库模型,以及相应封装、操作的方法。具体而言,控制层由处理模型、控制合约和执行环境组成。处理模型从区块链系统的角度分析和描述业务/交易处理方式的差异。控制合约将业务逻辑转化为交易、区块、账本的具体操作。执行环境为节点封装通用的运行资源,使区块链具备稳定的可移植性。

1) 处理模型

账本用于存储全部或部分业务数据,那么依据该数据的分布特征可将处理模型分为链上(on-chain)和链下(off-chain)2种。

链上模型是指业务数据完全存储在账本中,业务逻辑通过账本的直接存取实现数据交互。该模型的信任基础建立在强关联性的账本结构中,不仅实现防篡改而且简化了上层控制逻辑,但是过量的资源消耗与庞大的数据增长使系统的可扩展性达到瓶颈,因此该模型适用于数据量小、安全性强、去中心化和透明程度高的业务。

链下模型是指业务数据部分或完全存储在账本之外,只在账本中存储指针以及其他证明业务数据存在性、真实性和有效性的数据。该模型以“最小化信任成本”为准则,将信任基础建立在账本与链下数据的证明机制中,降低账本构建成本。由于与公开的账本解耦,该模型具有良好的隐私性和可拓展性,适用于去中心化程度低、隐私性强、吞吐量大的业务。

2) 控制合约

区块链中控制合约经历了2个发展阶段,首先是以比特币为代表的非图灵完备的自动化脚本,用于锁定和解锁基于UTXO信息模型的交易,与强关联账本共同克服了双花等问题,使交易数据具备流通价值。其次是以以太坊为代表的图灵完备的智能合约,智能合约是一种基于账本数据自动执行的数字化合同,由开发者根据需求预先定义,是上层应用将业务逻辑编译为节点和账本操作集合的关键。智能合约通过允许相互不信任的参与者在没有可信第三方的情况下就复杂合同的执行结果达成协议,使合约具备可编程性,实现业务逻辑的灵活定义并扩展区块链的使用。

3) 执行环境

执行环境是指执行控制合约所需要的条件,主要分为原生环境和沙盒环境。原生环境是指合约与节点系统紧耦合,经过源码编译后直接执行,该方式下合约能经历完善的静态分析,提高安全性。沙盒环境为节点运行提供必要的虚拟环境,包括网络通信、数据存储以及图灵完备的计算/控制环境等,在虚拟机中运行的合约更新方便、灵活性强,其产生的漏洞也可能造成损失。

4) 研究现状

控制层的研究方向主要集中在可扩展性优化与安全防护2个方面。

侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷。Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花。Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余。分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载。ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证。OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性。区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障。上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案。实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付。Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认。

一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点。Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题。Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利。Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测。

4 技术选型分析

区别于其他技术,区块链发展过程中最显著的特点是与产业界紧密结合,伴随着加密货币和分布式应用的兴起,业界出现了许多区块链项目。这些项目是区块链技术的具体实现,既有相似之处又各具特点,本节将根据前文所述层次化结构对比特币、以太坊和超级账本Fabric项目进行分析,然后简要介绍其他代表性项目并归纳和对比各项目的技术选型及特点。

4.1 比特币

比特币是目前规模最大、影响范围最广的非许可链开源项目。图9为比特币项目以账本为核心的运行模式,也是所有非许可链项目的雏形。比特币网络为用户提供兑换和转账业务,该业务的价值流通媒介由账本确定的交易数据——比特币支撑。为了保持账本的稳定和数据的权威性,业务制定奖励机制,即账本为节点产生新的比特币或用户支付比特币,以此驱动节点共同维护账本。

图9

新窗口打开|

下载原图ZIP|

生成PPT

图9  

比特币运行模式

比特币网络主要由2种节点构成:全节点和轻节点。全节点是功能完备的区块链节点,而轻节点不存储完整的账本数据,仅具备验证与转发功能。全节点也称为矿工节点,计算证明依据的过程被称为“挖矿”,目前全球拥有近 1 万个全节点;矿池则是依靠奖励分配策略将算力汇集起来的矿工群;除此之外,还有用于存储私钥和地址信息、发起交易的客户端(钱包)。

1) 网络层

比特币在网络层采用非结构化方式组网,路由表呈现随机性。节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33]。节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等。新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的。交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路。在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份。

2) 数据层

比特币数据层面的技术选型已经被广泛研究,使用UTXO信息模型记录交易数据,实现所有权的简单、有效证明,利用 MKT、散列函数和时间戳实现区块的高效验证并产生强关联性。在加密机制方面,比特币采用参数为Secp256k1的椭圆曲线数字签名算法(ECDSA,elliptic curve digital signature algorithm)生成用户的公私钥,钱包地址则由公钥经过双重散列、Base58Check 编码等步骤生成,提高了可读性。

3) 共识层

比特币采用 PoW 算法实现节点共识,该算法证明依据中的阈值设定可以改变计算难度。计算难度由每小时生成区块的平均块数决定,如果生成得太快,难度就会增加。该机制是为了应对硬件升级或关注提升引起的算力变化,保持证明依据始终有效。目前该阈值被设定为10 min产出一个区块。除此之外,比特币利用奖惩机制保证共识的可持续运行,主要包括转账手续费、挖矿奖励和矿池分配策略等。

4) 控制层

比特币最初采用链上处理模型,并将控制语句直接记录在交易中,使用自动化锁定/解锁脚本验证UTXO模型中的比特币所有权。由于可扩展性和确认时延的限制,比特币产生多个侧链项目如Liquid、RSK、Drivechain等,以及链下处理项目Lightning Network等,从而优化交易速度。

4.2 以太坊

以太坊是第一个以智能合约为基础的可编程非许可链开源平台项目,支持使用区块链网络构建分布式应用,包括金融、音乐、游戏等类型;当满足某些条件时,这些应用将触发智能合约与区块链网络产生交互,以此实现其网络和存储功能,更重要的是衍生出更多场景应用和价值产物,例如以太猫,利用唯一标识为虚拟猫赋予价值;GitCoin,众筹软件开发平台等。

1) 网络层

以太坊底层对等网络协议簇称为DEVP2P,除了满足区块链网络功能外,还满足与以太坊相关联的任何联网应用程序的需求。DEVP2P将节点公钥作为标识,采用 Kademlia 算法计算节点的异或距离,从而实现结构化组网。DEVP2P主要由3种协议组成:节点发现协议RLPx、基础通信协议Wire和扩展协议Wire-Sub。节点间基于Gossip实现多点传播;新节点加入时首先向硬编码引导节点(bootstrap node)发送入网请求;然后引导节点根据Kademlia 算法计算与新节点逻辑距离最近的节点列表并返回;最后新节点向列表中节点发出握手请求,包括网络版本号、节点ID、监听端口等,与这些节点建立连接后则使用Ping/Pong机制保持连接。Wire子协议构建了交易获取、区块同步、共识交互等逻辑通路,与比特币类似,以太坊也为轻量级钱包客户端设计了简易以太坊协议(LES,light ethereum subprotocol)及其变体PIP。安全方面,节点在RLPx协议建立连接的过程中采用椭圆曲线集成加密方案(ECIES)生成公私钥,用于传输共享对称密钥,之后节点通过共享密钥加密承载数据以实现数据传输保护。

2) 数据层

以太坊通过散列函数维持区块的关联性,采用MPT实现账户状态的高效验证。基于账户的信息模型记录了用户的余额及其他 ERC 标准信息,其账户类型主要分为2类:外部账户和合约账户;外部账户用于发起交易和创建合约,合约账户用于在合约执行过程中创建交易。用户公私钥的生成与比特币相同,但是公钥经过散列算法Keccak-256计算后取20 B作为外部账户地址。

3) 共识层

以太坊采用 PoW 共识,将阈值设定为 15 s产出一个区块,计划在未来采用PoS或Casper共识协议。较低的计算难度将导致频繁产生分支链,因此以太坊采用独有的奖惩机制——GHOST 协议,以提高矿工的共识积极性。具体而言,区块中的散列值被分为父块散列和叔块散列,父块散列指向前继区块,叔块散列则指向父块的前继。新区块产生时,GHOST 根据前 7 代区块的父/叔散列值计算矿工奖励,一定程度弥补了分支链被抛弃时浪费的算力。

4) 控制层

每个以太坊节点都拥有沙盒环境 EVM,用于执行Solidity语言编写的智能合约;Solidity语言是图灵完备的,允许用户方便地定义自己的业务逻辑,这也是众多分布式应用得以开发的前提。为优化可扩展性,以太坊拥有侧链项目 Loom、链下计算项目Plasma,而分片技术已于2018年加入以太坊源码。

4.3 超级账本Fabric

超级账本是Linux基金会旗下的开源区块链项目,旨在提供跨行业区块链解决方案。Fabric 是超级账本子项目之一,也是影响最广的企业级可编程许可链项目;在已知的解决方案中,Fabric 被应用于供应链、医疗和金融服务等多种场景。

1) 网络层

Fabric 网络以组织为单位构建节点集群,采用混合式对等网络组网;每个组织中包括普通节点和锚节点(anchor peer),普通节点完成组织内的消息路由,锚节点负责跨组织的节点发现与消息路由。Fabric网络传播层基于Gossip实现,需要使用配置文件初始化网络,网络生成后各节点将定期广播存活信息,其余节点根据该信息更新路由表以保持连接。交互逻辑层采用多通道机制,即相同通道内的节点才能进行状态信息交互和区块同步。Fabric 为许可链,因此在网络层采取严苛的安全机制:节点被颁发证书及密钥对,产生PKI-ID进行身份验证;可选用 TLS 双向加密通信;基于多通道的业务隔离;可定义策略指定通道内的某些节点对等传输私有数据。

2) 数据层

Fabric的区块中记录读写集(read-write set)描述交易执行时的读写过程。该读写集用于更新状态数据库,而状态数据库记录了键、版本和值组成的键值对,因此属于键值对信息模型。一方面,散列函数和 MerkleTree 被用作高效关联结构的实现技术;另一方面,节点还需根据键值验证状态数据库与读写集中的最新版本是否一致。许可链场景对匿名性的要求较低,但对业务数据的隐私性要求较高,因此Fabric 1.2版本开始提供私有数据集(PDC,private data collection)功能。

3) 共识层

Fabric在0.6版本前采用PBFT 共识协议,但是为了提高交易吞吐量,Fabric 1.0 选择降低安全性,将共识过程分解为排序和验证2种服务,排序服务采用CFT类协议Kafka、Raft(v1.4之后)完成,而验证服务进一步分解为读写集验证与多签名验证,最大程度提高了共识速度。由于Fabric针对许可链场景,参与方往往身份可知且具有相同的合作意图,因此规避了节点怠工与作恶的假设,不需要奖惩机制调节。

4) 控制层

Fabric 对于扩展性优化需求较少,主要得益于共识层的优化与许可链本身参与节点较少的前提,因此主要采用链上处理模型,方便业务数据的存取;而 PDC 中仅将私有数据散列值上链的方式则属于链下处理模型,智能合约可以在本地进行数据存取。Fabric 节点采用模块化设计,基于 Docker构建模块执行环境;智能合约在Fabric中被称为链码,使用GO、Javascript和Java语言编写,也是图灵完备的。

4.4 其他项目

除了上述3种区块链基础项目外,产业界还有许多具有代表性的项目,如表1所示。

5 区块链应用研究

区块链技术有助于降低金融机构间的审计成本,显著提高支付业务的处理速度及效率,可应用于跨境支付等金融场景。除此之外,区块链还应用于产权保护、信用体系建设、教育生态优化、食品安全监管、网络安全保障等非金融场景。

根据这些场景的应用方式以及区块链技术特点,可将区块链特性概括为如下几点。1) 去中心化。节点基于对等网络建立通信和信任背书,单一节点的破坏不会对全局产生影响。2) 不可篡改。账本由全体节点维护,群体协作的共识过程和强关联的数据结构保证节点数据一致且基本无法被篡改,进一步使数据可验证和追溯。3) 公开透明。除私有数据外,链上数据对每个节点公开,便于验证数据的存在性和真实性。4) 匿名性。多种隐私保护机制使用户身份得以隐匿,即便如此也能建立信任基础。5) 合约自治。预先定义的业务逻辑使节点可以基于高可信的账本数据实现自治,在人-人、人-机、机-机交互间自动化执行业务。

鉴于上述领域的应用在以往研究中均有详细描述,本文将主要介绍区块链在智慧城市、边缘计算和人工智能领域的前沿应用研究现状。

表1

表1  

代表性区块链项目

技术选型CordaQuorumLibraBlockstackFilecoinZcash控制合约Kotlin,JavaGOMoveClarity非图灵完备非图灵完备非图灵完备执行环境JVMEVMMVM源码编译源码编译源码编译处理模型链上链上/链下(私有数据)链上链下(虚拟链)链下(IPFS)链上奖惩机制——Libra coinsStacks tokenFilecoinZcash/Turnstiles共识算法Notary 机制/RAFT,BFT-SMaRtQuorum-Chain,RAFTLibraBFTTunable Proofs,proof-of-burnPoRep,PoETPoW信息模型UTXO基于账户基于账户基于账户基于账户UTXO关联验证结构散列算法MKT散列算法MPT散列算法MKT散列算法Merklized Adaptive Radix Forest (MARF)散列算法MKT散列算法MKT加密机制Tear-offs机制、混合密钥基于EnclaveSHA3-256/EdDSA基于Gaia/Blockstack AuthSECP256K1/BLSzk-SNARK组网方式混合型结构化混合型无结构结构化/无结构无结构通信机制AMQP1.0/单点传播Wire/GossipNoise-ProtocolFramework/GossipAtlas/GossipLibp2p/GossipBitcoin-Core/Gossip安全机制Corda加密套件/TLS证书/HTTPSDiffie-HellmanSecure BackboneTLSTor区块链类型许可链许可链许可链非许可链非许可链非许可链特点只允许对实际参与给定交易的各方进行信息访问和验证功能基于以太坊网络提供公共交易和私有交易2种交互渠道稳定、快速的交易网络剔除中心服务商的、可扩展的分布式数据存储设施,旨在保护隐私数据激励机制驱动的存储资源共享生态基于比特币网络提供零知识证明的隐私保护应用场景金融业务平台分布式应用加密货币互联网基础设施文件存储与共享加密货币

新窗口打开|

下载CSV

5.1 智慧城市

智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景。智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战。区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决。Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据。

5.2 边缘计算

边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验。安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障。区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用。首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据。其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础。Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性。Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题。Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性。

5.3 人工智能

人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标。人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费。此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大。区块链不可篡改的特性可以实现感知和训练过程的可信。另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率。Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果。Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库。

6 技术挑战与研究展望

6.1 层次优化与深度融合

区块链存在“三元悖论”——安全性、扩展性和去中心化三者不可兼得,只能依靠牺牲一方的效果来满足另外两方的需求。以比特币为代表的公链具有较高的安全性和完全去中心化的特点,但是资源浪费等问题成为拓展性优化的瓶颈。尽管先后出现了PoS、BFT等共识协议优化方案,或侧链、分片等链上处理模型,或Plasma、闪电网络等链下扩展方案,皆是以部分安全性或去中心化为代价的。因此,如何将区块链更好地推向实际应用很大程度取决于三元悖论的解决,其中主要有2种思路。

1) 层次优化

区块链层次化结构中每层都不同程度地影响上述3种特性,例如网络时延、并行读写效率、共识速度和效果、链上/链下模型交互机制的安全性等,对区块链的优化应当从整体考虑,而不是单一层次。

网络层主要缺陷在于安全性,可拓展性则有待优化。如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19]。信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69]。相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素。

数据层的优化空间在于高效性,主要为设计新的数据验证结构与算法。该方向可以借鉴计算机研究领域的多种数据结构理论与复杂度优化方法,寻找适合区块链计算方式的结构,甚至设计新的数据关联结构。实际上相当一部分项目借鉴链式结构的思想开辟新的道路,例如压缩区块空间的隔离见证、有向无环图(DAG)中并行关联的纠缠结构(Tangle),或者Libra项目采用的状态树。

共识机制是目前研究的热点,也是同时影响三元特性的最难均衡的层次。PoW牺牲可拓展性获得完全去中心化和安全性,PoS高效的出块方式具备可扩展性但产生了分叉问题,POA结合两者做到了3种特性的均衡。以此为切入的Hybrid类共识配合奖惩机制的机动调节取得了较好效果,成为共识研究的过渡手段,但是如何做到三元悖论的真正突破还有待研究。

控制层面是目前可扩展性研究的热点,其优势在于不需要改变底层的基础实现,能够在短期内应用,集中在产业界的区块链项目中。侧链具有较好的灵活性但操作复杂度高,分片改进了账本结构但跨分片交互的安全问题始终存在,而链下处理模型在安全方面缺少理论分析的支撑。因此,三元悖论的解决在控制层面具有广泛的研究前景。

2) 深度融合

如果将层次优化称为横向优化,那么深度融合即为根据场景需求而进行的纵向优化。一方面,不同场景的三元需求并不相同,例如接入控制不要求完全去中心化,可扩展性也未遇到瓶颈,因此可采用BFT类算法在小范围构建联盟链。另一方面,区块链应用研究从简单的数据上链转变为链下存储、链上验证,共识算法从 PoW 转变为场景结合的服务证明和学习证明,此外,结合 5G 和边缘计算可将网络和计算功能移至网络边缘,节约终端资源。这意味着在严格的场景建模下,区块链的层次技术选型将与场景特点交叉创新、深度融合,具有较为广阔的研究前景。

6.2 隐私保护

加密货币以匿名性著称,但是区块链以非对称加密为基础的匿名体系不断受到挑战。反匿名攻击从身份的解密转变为行为的聚类分析,不仅包括网络流量的IP聚类,还包括交易数据的地址聚类、交易行为的启发式模型学习,因此大数据分析技术的发展使区块链隐私保护思路发生转变。已有Tor网络、混币技术、零知识证明、同态加密以及各类复杂度更高的非对称加密算法被提出,但是各方法仍有局限,未来将需要更为高效的方法。此外,随着区块链系统的可编程化发展,内部复杂性将越来越高,特别是智能合约需要更严格、有效的代码检测方法,例如匿名性检测、隐私威胁预警等。

6.3 工业区块链

工业区块链是指利用区块链夯实工业互联网中数据的流通和管控基础、促进价值转换的应用场景,具有较大的研究前景。

工业互联网是面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、弹性供给、高效配置的重要基础设施。“工业互联网平台”是工业互联网的核心,通过全面感知、实时分析、科学决策、精准执行的逻辑闭环,实现工业全要素、全产业链、全价值链的全面贯通,培育新的模式和业态。

可以看到,工业互联网与物联网、智慧城市、消费互联网等场景应用存在内在关联,例如泛在连接、数据共享和分析、电子商务等,那么其学术问题与技术实现必然存在关联性。区块链解决了物联网中心管控架构的单点故障问题,克服泛在感知设备数据的安全性和隐私性挑战,为智慧城市场景的数据共享、接入控制等问题提供解决方法,为激励资源共享构建了新型互联网价值生态。尽管工业互联网作为新型的产业生态系统,其技术体系更复杂、内涵更丰富,但是不难想象,区块链同样有利于工业互联网的发展。

“平台+区块链”能够通过分布式数据管理模式,降低数据存储、处理、使用的管理成本,为工业用户在工业 APP 选择和使用方面搭建起更加可信的环境,实现身份认证及操作行为追溯、数据安全存储与可靠传递。能够通过产品设计参数、质量检测结果、订单信息等数据“上链”,实现有效的供应链全要素追溯与协同服务。能够促进平台间数据交易与业务协同,实现跨平台交易结算,带动平台间的数据共享与知识复用,促进工业互联网平台间互联互通。

当然,工业是关乎国计民生的产业,将区块链去中心化、匿名化等特性直接用于工业互联网是不可取的,因此需要研究工业区块链管理框架,实现区块链的可管可控,在一定范围内发挥其安全优势,并对工业互联网的运转提供正向激励。

7 结束语

区块链基于多类技术研究的成果,以低成本解决了多组织参与的复杂生产环境中的信任构建和隐私保护等问题,在金融、教育、娱乐、版权保护等场景得到了较多应用,成为学术界的研究热点。比特币的出现重塑了人们对价值的定义,伴随着产业界的呼声,区块链技术得到了快速发展,而遵循区块链层次化分析方法,能够直观地区别各项目的技术路线和特点,为优化区块链技术提供不同观察视角,并为场景应用的深度融合创造条件,促进后续研究。未来的发展中,区块链将成为更为基础的信任支撑技术,在产业互联网等更广阔的领域健康、有序地发展。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。

参考文献

View Option

原文顺序

文献年度倒序

文中引用次数倒序

被引期刊影响因子

[1]

袁勇, 王飞跃 . 区块链技术发展现状与展望[J]. 自动化学报, 2016,42(4): 481-494.

[本文引用: 1]

YUAN Y , WANG F Y . Blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,42(4): 481-494.

[本文引用: 1]

[2]

邵奇峰, 张召, 朱燕超 ,等. 企业级区块链技术综述[J]. 软件学报, 2019,30(9): 2571-2592.

[本文引用: 1]

SHAO Q F , ZHANG Z , ZHU Y C ,et al. Survey of enterprise blockchains[J]. 2019,30(9): 2571-2592.

[本文引用: 1]

[3]

YANG W , AGHASIAN E , GARG S ,et al. A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future[J]. IEEE Access, 2019,7: 75845-75872.

[本文引用: 1]

[4]

韩璇, 袁勇, 王飞跃 . 区块链安全问题:研究现状与展望[J]. 自动化学报, 2019,45(1): 208-227.

[本文引用: 1]

HAN X , YUAN Y , WANG F Y . Security problems on blockchain:the state of the art and future trends[J]. Acta Automatica Sinica, 2016,45(1): 208-227.

[本文引用: 1]

[5]

ALI M , VECCHIO M , PINCHEIRA M ,et al. Applications of blockchains in the Internet of things:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2019,21: 1676-1717.

[本文引用: 1]

[6]

CHAUM D . Blind signature system[M]. Advances in Cryptology: Proceedings of Crypto 83.Springer USPress, 1984.

[本文引用: 1]

[7]

LAW L , SABEET S , SOLINAS J . How to make a mint:the cryptography of anonymous electronic cash[J]. The American University Law Review, 1997,46: 1131-1162.

[本文引用: 1]

[8]

JAKOBSSON M , JUELS A . Proofs of work and bread pudding protocols[C]// IFIP TC6/TC11 Joint Working Conference on Communications and Multimedia Security. IFIP, 1999: 258-272.

[本文引用: 1]

[9]

王学龙, 张璟 . P2P 关键技术研究综述[J]. 计算机应用研究, 2010,27(3): 801-805.

[本文引用: 1]

WANG X L , ZHANG J . Survey on peer-to-peer key technologies[J]. Application Research of Computers, 2010,27(3): 801-805.

[本文引用: 1]

[10]

DEMERS A , GREENE D , HOUSER C ,et al. Epidemic algorithms for replicated database maintenance[J]. ACM SIGOPS Operating Systems Review, 1988,22: 8-32.

[本文引用: 1]

[11]

DECKER C , WATTENHOFER R . Information propagation in the bitcoin network[C]// IEEE Thirteenth International Conference on Peer-to-peer Computing. IEEE, 2013: 1-10.

[本文引用: 1]

[12]

FADHIL M , OWENSON G , ADDA M . Locality based approach to improve propagation delay on the bitcoin peer-to-peer network[C]// 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2017: 556-559.

[本文引用: 1]

[13]

KANEKO Y , ASAKA T . DHT clustering for load balancing considering blockchain data size[C]// 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW). IEEE Computer Society, 2018: 71-74.

[本文引用: 1]

[14]

KOSHY P , KOSHY D , MCDANIEL P . An analysis of anonymity in bitcoin using P2P network traffic[C]// Financial Cryptography and Data Security:18th International Conference. Springer, 2014: 469-485.

[15]

BIRYUKOV A , KHOVRATOVICH D , PUSTOGAROV I . Deanonymisation of clients in bitcoin P2P network[C]// ACM SIGSAC Conference on Computer and Communications Security. ACM, 2014: 15-29.

[16]

VENKATAKRISHNAN S B , FANTI G , VISWANATH P . Dandelion:redesigning the bitcoin network for anonymity[C]// The 2017 ACM SIGMETRICS. ACM, 2017:57.

[本文引用: 1]

[17]

FANTI G , VENKATAKRISHNAN S B , BAKSHI S ,et al. Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees[J]. ACM SIGMETRICS Performance Evaluation Review, 2018,46: 5-7.

[本文引用: 1]

[18]

HEILMAN E , KENDLER A , ZOHAR A ,et al. Eclipse attacks on Bitcoin’s peer-to-peer network[C]// USENIX Conference on Security Symposium. USENIX Association, 2015: 129-144.

[本文引用: 1]

[19]

APOSTOLAKI M , ZOHAR A , VANBEVER L . Hijacking bitcoin:routing attacks on cryptocurrencies[C]// 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017: 375-392.

[本文引用: 2]

[20]

REYZIN L , IVANOV S . Improving authenticated dynamic dictionaries,with applications to cryptocurrencies[C]// International Conference on Financial Cryptography & Data Security. Springer, 2017: 376-392.

[本文引用: 1]

[21]

ZHANG C , XU C , XU J L ,et al. GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain[C]// IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019: 842-853.

[本文引用: 1]

[22]

REID F , HARRIGAN M . An analysis of anonymity in the bitcoin system[C]// 2011 IEEE Third International Conference on Privacy,Security,Risk and Trust. IEEE, 2011: 1318-1326.

[本文引用: 1]

[23]

MEIKLEJOHN S , POMAROLE M , JORDAN G ,et al. A fistful of bitcoins:characterizing payments among men with no names[C]// The 2013 Conference on Internet Measurement Conference. ACM, 2013: 127-140.

[本文引用: 1]

[24]

AWAN M K , CORTESI A . Blockchain transaction analysis using dominant sets[C]// IFIP International Conference on Computer Information Systems and Industrial Management. IFIP, 2017: 229-239.

[本文引用: 1]

[25]

SAXENA A , MISRA J , DHAR A . Increasing anonymity in bitcoin[C]// International Conference on Financial Cryptography and Data Security. Springer, 2014: 122-139.

[本文引用: 1]

[26]

MIERS I , GARMAN C , GREEN M ,et al. Zerocoin:anonymous distributed e-cash from bitcoin[C]// 2013 IEEE Symposium on Security and Privacy. IEEE, 2013: 397-411.

[本文引用: 1]

[27]

SASSON E B , CHIESA A , GARMAN C ,et al. Zerocash:decentralized anonymous payments from bitcoin[C]// 2014 IEEE Symposium on Security and Privacy (SP). IEEE, 2014: 459-474.

[本文引用: 1]

[28]

YIN W , WEN Q , LI W ,et al. A anti-quantum transaction authentication approach in blockchain[J]. IEEE Access, 2018,6: 5393-5401.

[本文引用: 1]

[29]

DOUCEUR J R , . The sybil attack[C]// The First International Workshop on Peer-to-Peer Systems(IPTPS’ 01). Springer, 2002: 251-260.

[本文引用: 1]

[30]

KARAME G O , ANDROULAKI E , CAPKUN S . Double-spending fast payments in bitcoin[C]// The 2012 ACM conference on Computer and communications security. ACM, 2012: 906-917.

[本文引用: 1]

[31]

LAMPORT L , SHOSTAK R , PEASE M . The byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982,4: 382-401.

[本文引用: 1]

[32]

BANO S , SONNINO A , AL-BASSAM M ,et al. Consensus in the age of blockchains[J]..03936,2017. arXiv Preprint,arXiv:1711.03936,2017.

[本文引用: 1]

[33]

DWORK C , LYNCH N , STOCKMEYER L . Consensus in the presence of partial synchrony[J]. Journal of the ACM, 1988,35: 288-323.

[本文引用: 2]

[34]

TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2123.

[本文引用: 1]

[35]

CACHIN C VUKOLIĆ M . Blockchains consensus protocols in the wild[J]. arXiv Preprint,arXiv:1707.01873, 2017.

[本文引用: 1]

[36]

CASTRO M , LISKOV B . Practical byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002,20: 398-461.

[本文引用: 1]

[37]

ONGARO D , OUSTERHOUT J . In search of an understandable consensus algorithm[C]// The 2014 USENIX Conference on USENIX Annual Technical Conference. USENIX Association, 2015: 305-320.

[本文引用: 1]

[38]

BALL M , ROSEN A , SABIN M ,et al. Proofs of useful work[R]. Cryptology ePrint Archive:Report 2017/203.

[本文引用: 1]

[39]

MIHALJEVIC B , ZAGAR M . Comparative analysis of blockchain consensus algorithms[C]// International Convention on Information and Communication Technology,Electronics and Microelectronics (MIPRO). IEEE, 2018: 1545-1550.

[本文引用: 1]

[40]

KIAYIAS A , RUSSELL A , DAVID B ,et al. Ouroboros:a provably secure proof-of-stake blockchain protocol[C]// Advances in Cryptology - CRYPTO 2017. Springer, 2017: 357-388.

[本文引用: 1]

[41]

FISCH B . Tight proofs of space and replication[J].,ePrint-2018-702. IACR Cryptology ePrint Archive,ePrint-2018-702.

[本文引用: 1]

[42]

BELOTTI M , BOŽIĆ N , PUJOLLE G ,et al. A vademecum on blockchain technologies:when,which,and how[J]. IEEE Communications Surveys & Tutorials, 2019,21: 3796-3838.

[本文引用: 1]

[43]

WANG W B , HOANG D T , HU P Z ,et al. A survey on consensus mechanisms and mining strategy management in blockchain networks[J]. IEEE Access, 2019,7: 22328-22370.

[本文引用: 1]

[44]

YOO J H , JUNG Y L , SHIN D H ,et al. Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms[C]// IEEE International Workshop on Blockchain Oriented Software Engineering. 2019: 11-21.

[本文引用: 1]

[45]

ZHENG Z B , XIE S , DAI H ,et al. An overview of blockchain technology:architecture,consensus,and future trends[C]// 6th IEEE International Congress on Big Data. IEEE, 2017: 557-564.

[本文引用: 1]

[46]

YIN M , MALKHI D , REITER M K ,et al. HotStuff:BFT consensus in the lens of blockchain[C]// ACM Symposium on Principles of Distributed Computing. ACM, 2019: 347-356.

[本文引用: 1]

[47]

ALI S , WANG G , WHITE B ,et al. Libra critique towards global decentralized financial system[C]// Communications in Computer and Information Science. Springer, 2019: 661-672.

[本文引用: 1]

[48]

BENTOV I , LEE C , MIZRAHI A ,et al. Proof of activity:extending bitcoin’s proof of work via proof of stake[J]. IACR Cryptology ePrint Archive,ePrint-2014-25478.

[本文引用: 1]

[49]

DECKER C , SEIDEL J , WATTENHOFER R . Bitcoin meets strong consistency[J].,2014. arXiv Preprint,arXiv:1412.7935,2014.

[本文引用: 1]

[50]

KOKORIS-KOGIAS E , JOVANOVIC P , GAILLY N ,et al. Enhancing bitcoin security and performance with strong consistency via collective signing[J]. Applied Mathematical Modelling, 2016,37: 5723-5742.

[本文引用: 1]

[51]

BUTERIN V , GRIFFITH V . Casper the friendly finality gadget[J]. arXiv Preprint,arXiv:1710.09437,2017.

[本文引用: 1]

[52]

TSCHORSCH F , SCHEUERMANN B . Bitcoin and beyond:a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys & Tutorials, 2016,18: 2084-2023,2017.

[本文引用: 1]

[53]

KIAYIAS A , MILLER A , ZINDROS D . Non-interactive proofs of proof-of-work[J]. IACR Cryptology ePrint Archive,ePrint-2017-963.

[本文引用: 1]

[54]

LUU L , NARAYANAN V , ZHENG C ,et al. A secure sharding protocol for open blockchains[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security(CCS’16). ACM, 2016: 17-30.

[本文引用: 1]

[55]

KOKORIS-KOGIAS E , JOVANOVIC P , GASSER L ,et al. OmniLedger:a secure,scale-out,decentralized ledger via sharding[C]// IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 2018: 583-598.

[本文引用: 1]

[56]

LI S , YU M , AVESTIMEHR S ,et al. PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously[J]. arXiv Preprint,arXiv:1809.10361,2018.

[本文引用: 1]

[57]

XIE J F , YU F R , HUANG T ,et al. A survey on the scalability of blockchain systems[J]. IEEE Network, 2019,33: 166-173.

[本文引用: 1]

[58]

BURCHERT C , DECKER C , WATTENHOFER R . Scalable funding of bitcoin micropayment channel networks[C]// Stabilization,Safety,and Security of Distributed Systems. Springer, 2017: 361-377.

[本文引用: 1]

[59]

LUU L , CHU D , OLICKEL H ,et al. Making smart contracts smarter[C]// The 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016: 254-269.

[本文引用: 1]

[60]

BRENT L , JURISEVIC A , KONG M ,et al. Vandal:a scalable security analysis framework for smart contracts[J]. arXiv Preprint,arXiv:1809.039812018.

[本文引用: 1]

[61]

JIANG B , LIU Y , CHAN W K . ContractFuzzer:fuzzing smart contracts for vulnerability detection[J]. arXiv Preprint,arXiv:1807.03932,2018.

[本文引用: 1]

[62]

HASHEMI S H , FAGHRI F , CAMPBELL R H . Decentralized user-centric access control using pubsub over blockchain[J]. arXiv Preprint,arXiv:1710.00110,2017.

[本文引用: 1]

[63]

BAO S.CAO Y , LEI A ,et al. Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems[J]. IEEE Access, 2019,7: 80390-80403.

[本文引用: 1]

[64]

SAMANIEGO M , DETERS R . Hosting virtual IoT resources on edge-hosts with blockchain[C]// IEEE International Conference on Computer & Information Technology. IEEE, 2016: 116-119.

[本文引用: 1]

[65]

STANCIU A , . Blockchain based distributed control system for edge computing[C]// International Conference on Control Systems &Computer Science. IEEE, 2017: 667-671.

[本文引用: 1]

[66]

ZIEGLER M H , GROMANN M , KRIEGER U R . Integration of fog computing and blockchain technology using the plasma framework[C]// 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 2019: 120-123.

[本文引用: 1]

[67]

KIM H , PARK J , BENNIS M ,et al. Blockchained on-device federated learning[J]. arXiv Preprint,arXiv:1808.03949, 2018.

[本文引用: 1]

[68]

BRAVO-MARQUEZ F , REEVES S , UGARTE M . Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions[C]// 2019 IEEE International Conference on Decentralized Applications and Infrastructures. IEEE, 2019: 119-124.

[本文引用: 1]

[69]

刘江, 霍如, 李诚成 ,等. 基于命名数据网络的区块链信息传输机制[J]. 通信学报, 2018,39(1), 24-33.

[本文引用: 1]

LIU J , HUO R , LI C C ,et al. Information transmission mechanism of Blockchain technology based on named-data networking[J]. Journal on Communications, 2018,39(1): 24-33.

[本文引用: 1]

区块链技术发展现状与展望

1

2016

... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...

区块链技术发展现状与展望

1

2016

... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...

企业级区块链技术综述

1

2019

... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...

企业级区块链技术综述

1

2019

... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...

A survey on blockchain-based internet service architecture:requirements,challenges,trends,and future

1

2019

... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...

区块链安全问题:研究现状与展望

1

2016

... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...

区块链安全问题:研究现状与展望

1

2016

... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...

Applications of blockchains in the Internet of things:a comprehensive survey

1

2019

... 区块链涵盖多种技术,相关概念易混淆,且应用场景繁多,为此,已有相关综述主要从技术体系结构、技术挑战和应用场景等角度来梳理区块链的最新进展、技术差异和联系,总结技术形态和应用价值.袁勇等[1]给出了区块链基本模型,以比特币为例将非许可链分为数据层、网络层、共识层、激励层、合约层和应用层;邵奇峰等[2]结合开源项目细节,对比了多种企业级区块链(许可链)的技术特点;Yang等[3]总结了基于区块链的网络服务架构的特点、挑战和发展趋势;韩璇等[4]系统性归纳了区块链安全问题的研究现状;Ali等[5]总结了区块链在物联网方面的应用研究进展、趋势.上述文献虽然归纳得较为完整,但是都没有从许可链与非许可链共性技术的角度进行通用的层次结构分析,没有体现出区块链技术与组网路由、数据结构、同步机制等已有技术的关联性,且缺少对区块链项目的差异分析.本文则对有关概念进行区分,探讨了通用的层次化技术结构及其与已有技术的关联性,并针对该结构横向分析相关学术研究进展;根据分层结构对比部分区块链项目的技术选型;最后以智慧城市场景、边缘计算和人工智能技术为代表介绍区块链应用研究现状,给出区块链技术挑战与研究展望. ...

Blind signature system

1

1984

... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...

How to make a mint:the cryptography of anonymous electronic cash

1

1997

... 加密货币的概念起源于一种基于盲签名(blind signature)的匿名交易技术[6],最早的加密货币交易模型“electronic cash”[7]如图1所示. ...

Proofs of work and bread pudding protocols

1

1999

... 最早的加密货币构想将银行作为构建信任的基础,呈现中心化特点.此后,加密货币朝着去中心化方向发展,并试图用工作量证明(PoW,poof of work)[8]或其改进方法定义价值.比特币在此基础上,采用新型分布式账本技术保证被所有节点维护的数据不可篡改,从而成功构建信任基础,成为真正意义上的去中心化加密货币.区块链从去中心化加密货币发展而来,随着区块链的进一步发展,去中心化加密货币已经成为区块链的主要应用之一. ...

P2P 关键技术研究综述

1

2010

... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...

P2P 关键技术研究综述

1

2010

... 对等网络的体系架构可分为无结构对等网络、结构化对等网络和混合式对等网络[9],根据节点的逻辑拓扑关系,区块链网络的组网结构也可以划分为上述3种,如图3所示. ...

Epidemic algorithms for replicated database maintenance

1

1988

... 传播层实现对等节点间数据的基本传输,包括2 种数据传播方式:单点传播和多点传播.单点传播是指数据在2个已知节点间直接进行传输而不经过其他节点转发的传播方式;多点传播是指接收数据的节点通过广播向邻近节点进行数据转发的传播方式,区块链网络普遍基于Gossip协议[10]实现洪泛传播.连接层用于获取节点信息,监测和改变节点间连通状态,确保节点间链路的可用性(availability).具体而言,连接层协议帮助新加入节点获取路由表数据,通过定时心跳监测为节点保持稳定连接,在邻居节点失效等情况下为节点关闭连接等.交互逻辑层是区块链网络的核心,从主要流程上看,该层协议承载对等节点间账本数据的同步、交易和区块数据的传输、数据校验结果的反馈等信息交互逻辑,除此之外,还为节点选举、共识算法实施等复杂操作和扩展应用提供消息通路. ...

Information propagation in the bitcoin network

1

2013

... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...

Locality based approach to improve propagation delay on the bitcoin peer-to-peer network

1

2017

... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...

DHT clustering for load balancing considering blockchain data size

1

2018

... 随着近年来区块链网络的爆炸式发展以及开源特点,学术界开始关注大型公有链项目的网络状况,监测并研究它们的特点,研究对象主要为比特币网络.Decker等[11]设计和实现测量工具,分析传播时延数据、协议数据和地址数据,建模分析影响比特币网络性能的网络层因素,基于此提出各自的优化方法.Fadhil等[12]提出基于事件仿真的比特币网络仿真模型,利用真实测量数据验证模型的有效性,最后提出优化机制 BCBSN,旨在设立超级节点降低网络波动.Kaneko 等[13]将区块链节点分为共识节点和验证节点,其中共识节点采用无结构组网方式,验证节点采用结构化组网方式,利用不同组网方式的优点实现网络负载的均衡. ...

An analysis of anonymity in bitcoin using P2P network traffic

2014

Deanonymisation of clients in bitcoin P2P network

2014

Dandelion:redesigning the bitcoin network for anonymity

1

2017

... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...

Dandelion++:lightweight cryptocurrency networking with formal anonymity guarantees

1

2018

... 匿名性是加密货币的重要特性之一,但从网络层视角看,区块链的匿名性并不能有效保证,因为攻击者可以利用监听并追踪 IP 地址的方式推测出交易之间、交易与公钥地址之间的关系,通过匿名隐私研究可以主动发掘安全隐患,规避潜在危害.Koshy 等[16,17]从网络拓扑、传播层协议和作恶模型3个方面对比特币网络进行建模,通过理论分析和仿真实验证明了比特币网络协议在树形组网结构下仅具备弱匿名性,在此基础上提出 Dandelion 网络策略以较低的网络开销优化匿名性,随后又提出 Dandelion++原理,以最优信息理论保证来抵抗大规模去匿名攻击. ...

Eclipse attacks on Bitcoin’s peer-to-peer network

1

2015

... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...

Hijacking bitcoin:routing attacks on cryptocurrencies

2

2017

... 区块链重点关注其数据层和共识层面机制,并基于普通网络构建开放的互联环境,该方式极易遭受攻击.为提高区块链网络的安全性,学术界展开研究并给出了相应的解决方案.Heilman 等[18]对比特币和以太坊网络实施日蚀攻击(eclipse attack)——通过屏蔽正确节点从而完全控制特定节点的信息来源,证实了该攻击的可行性.Apostolaki等[19]提出针对比特币网络的 BGP(border gateway protocal)劫持攻击,通过操纵自治域间路由或拦截域间流量来制造节点通信阻塞,表明针对关键数据的沿路攻击可以大大降低区块传播性能. ...

... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...

Improving authenticated dynamic dictionaries,with applications to cryptocurrencies

1

2017

... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...

GEM^2-tree:a gas-efficient structure for authenticated range queries in blockchain

1

2019

... 高效验证的学术问题源于验证数据结构(ADS,authenticated data structure),即利用特定数据结构快速验证数据的完整性,实际上 MKT 也是其中的一种.为了适应区块链数据的动态性(dynamical)并保持良好性能,学术界展开了研究.Reyzin等[20]基于AVL树形结构提出AVL+,并通过平衡验证路径、缺省堆栈交易集等机制,简化轻量级节点的区块头验证过程.Zhang等[21]提出GEM2-tree结构,并对其进行优化提出 GEM2כ-tree 结构,通过分解单树结构、动态调整节点计算速度、扩展数据索引等机制降低以太坊节点计算开销. ...

An analysis of anonymity in the bitcoin system

1

2011

... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...

A fistful of bitcoins:characterizing payments among men with no names

1

2013

... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...

Blockchain transaction analysis using dominant sets

1

2017

... 区块数据直接承载业务信息,因此区块数据的匿名关联性分析更为直接.Reid等[22]将区块数据建模为事务网络和用户网络,利用多交易数据的用户指向性分析成功降低网络复杂度.Meiklejohn等[23]利用启发式聚类方法分析交易数据的流动特性并对用户进行分组,通过与这些服务的互动来识别主要机构的比特币地址.Awan 等[24]使用优势集(dominant set)方法对区块链交易进行自动分类,从而提高分析准确率. ...

Increasing anonymity in bitcoin

1

2014

... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...

Zerocoin:anonymous distributed e-cash from bitcoin

1

2013

... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...

Zerocash:decentralized anonymous payments from bitcoin

1

2014

... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...

A anti-quantum transaction authentication approach in blockchain

1

2018

... 隐私保护方面,Saxena等[25]提出复合签名技术削弱数据的关联性,基于双线性映射中的Diffie-Hellman假设保证计算困难性,从而保护用户隐私.Miers 等[26]和 Sasson 等[27]提出 Zerocoin 和Zerocash,在不添加可信方的情况下断开交易间的联系,最早利用零知识证明(zero-knowledge proof)技术隐藏交易的输入、输出和金额信息,提高比特币的匿名性.非对称加密是区块链数据安全的核心,但在量子计算面前却显得“捉襟见肘”,为此Yin等[28]利用盆景树模型(bonsai tree)改进晶格签名技术(lattice-based signature),以保证公私钥的随机性和安全性,使反量子加密技术适用于区块链用户地址的生成. ...

The sybil attack

1

2002

... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...

Double-spending fast payments in bitcoin

1

2012

... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...

The byzantine generals problem

1

1982

... 区块链网络中每个节点必须维护完全相同的账本数据,然而各节点产生数据的时间不同、获取数据的来源未知,存在节点故意广播错误数据的可能性,这将导致女巫攻击[29]、双花攻击[30]等安全风险;除此之外,节点故障、网络拥塞带来的数据异常也无法预测.因此,如何在不可信的环境下实现账本数据的全网统一是共识层解决的关键问题.实际上,上述错误是拜占庭将军问题(the Byzantine generals problem)[31]在区块链中的具体表现,即拜占庭错误——相互独立的组件可以做出任意或恶意的行为,并可能与其他错误组件产生协作,此类错误在可信分布式计算领域被广泛研究. ...

Consensus in the age of blockchains

1

... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...

Consensus in the presence of partial synchrony

2

1988

... 状态机复制(state-machine replication)是解决分布式系统容错问题的常用理论.其基本思想为:任何计算都表示为状态机,通过接收消息来更改其状态.假设一组副本以相同的初始状态开始,并且能够就一组公共消息的顺序达成一致,那么它们可以独立进行状态的演化计算,从而正确维护各自副本之间的一致性.同样,区块链也使用状态机复制理论解决拜占庭容错问题,如果把每个节点的数据视为账本数据的副本,那么节点接收到的交易、区块即为引起副本状态变化的消息.状态机复制理论实现和维持副本的一致性主要包含2个要素:正确执行计算逻辑的确定性状态机和传播相同序列消息的共识协议.其中,共识协议是影响容错效果、吞吐量和复杂度的关键,不同安全性、可扩展性要求的系统需要的共识协议各有不同.学术界普遍根据通信模型和容错类型对共识协议进行区分[32],因此严格地说,区块链使用的共识协议需要解决的是部分同步(partial synchrony)模型[33]下的拜占庭容错问题. ...

... 比特币在网络层采用非结构化方式组网,路由表呈现随机性.节点间则采用多点传播方式传递数据,曾基于Gossip协议实现,为提高网络的抗匿名分析能力改为基于Diffusion协议实现[33].节点利用一系列控制协议确保链路的可用性,包括版本获取(Vetsion/Verack)、地址获取(Addr/GetAddr)、心跳信息(PING/PONG)等.新节点入网时,首先向硬编码 DNS 节点(种子节点)请求初始节点列表;然后向初始节点随机请求它们路由表中的节点信息,以此生成自己的路由表;最后节点通过控制协议与这些节点建立连接,并根据信息交互的频率更新路由表中节点时间戳,从而保证路由表中的节点都是活动的.交互逻辑层为建立共识交互通道,提供了区块获取(GetBlock)、交易验证(MerkleBlock)、主链选择(CmpctBlock)等协议;轻节点只需要进行简单的区块头验证,因此通过头验证(GetHeader/Header)协议和连接层中的过滤设置协议指定需要验证的区块头即可建立简单验证通路.在安全机制方面,比特币网络可选择利用匿名通信网络Tor作为数据传输承载,通过沿路径的层层数据加密机制来保护对端身份. ...

Bitcoin and beyond:a technical survey on decentralized digital currencies

1

2016

... 区块链网络中主要包含PoX(poof of X)[34]、BFT(byzantine-fault tolerant)和 CFT(crash-fault tolerant)类基础共识协议.PoX 类协议是以 PoW (proof of work)为代表的基于奖惩机制驱动的新型共识协议,为了适应数据吞吐量、资源利用率和安全性的需求,人们又提出PoS(proof of stake)、PoST (proof of space-time)等改进协议.它们的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.BFT类协议是指解决拜占庭容错问题的传统共识协议及其改良协议,包括PBFT、BFT-SMaRt、Tendermint等.CFT类协议用于实现崩溃容错,通过身份证明等手段规避节点作恶的情况,仅考虑节点或网络的崩溃(crash)故障,主要包括Raft、Paxos、Kafka等协议. ...

Blockchains consensus protocols in the wild

1

2017

... 非许可链和许可链的开放程度和容错需求存在差异,共识层面技术在两者之间产生了较大区别.具体而言,非许可链完全开放,需要抵御严重的拜占庭风险,多采用PoX、BFT类协议并配合奖惩机制实现共识.许可链拥有准入机制,网络中节点身份可知,一定程度降低了拜占庭风险,因此可采用BFT类协议、CFT类协议构建相同的信任模型[35]. ...

Practical byzantine fault tolerance and proactive recovery

1

2002

... PBFT是 BFT经典共识协议,其主要流程如图8 所示.PBFT将节点分为主节点和副节点,其中主节点负责将交易打包成区块,副节点参与验证和转发,假设作恶节点数量为f.PBFT共识主要分为预准备、准备和接受3个阶段,主节点首先收集交易后排序并提出合法区块提案;其余节点先验证提案的合法性,然后根据区块内交易顺序依次执行并将结果摘要组播;各节点收到2f个与自身相同的摘要后便组播接受投票;当节点收到超过2f+1个投票时便存储区块及其产生的新状态[36]. ...

In search of an understandable consensus algorithm

1

2015

... Raft[37]是典型的崩溃容错共识协议,以可用性强著称.Raft将节点分为跟随节点、候选节点和领导节点,领导节点负责将交易打包成区块,追随节点响应领导节点的同步指令,候选节点完成领导节点的选举工作.当网络运行稳定时,只存在领导节点和追随节点,领导节点向追随节点推送区块数据从而实现同步.节点均设置生存时间决定角色变化周期,领导节点的心跳信息不断重置追随节点的生存时间,当领导节点发生崩溃时,追随节点自动转化为候选节点并进入选举流程,实现网络自恢复. ...

Proofs of useful work

1

2017

... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...

Comparative analysis of blockchain consensus algorithms

1

2018

... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...

Ouroboros:a provably secure proof-of-stake blockchain protocol

1

2017

... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...

Tight proofs of space and replication

1

... 如前文所述,PoX类协议的基本特点在于设计证明依据,使诚实节点可以证明其合法性,从而实现拜占庭容错.uPoW[38]通过计算有意义的正交向量问题证明节点合法性,使算力不被浪费.PoI (proof-of-importance)[39]利用图论原理为每个节点赋予重要性权重,权重越高的节点将越有可能算出区块.PoS(poof-of-stake)为节点定义“币龄”,拥有更高币龄的节点将被分配更多的股份(stake),而股份被作为证明依据用于成块节点的选举.Ouroboros[40]通过引入多方掷币协议增大了选举随机性,引入近乎纳什均衡的激励机制进一步提高PoS 的安全性.PoRep(proof-of-replication)[41]应用于去中心化存储网络,利用证明依据作为贡献存储空间的奖励,促进存储资源再利用. ...

A vademecum on blockchain technologies:when,which,and how

1

2019

... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...

A survey on consensus mechanisms and mining strategy management in blockchain networks

1

2019

... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...

Formal modeling and verification of a federated byzantine agreement algorithm for blockchain platforms

1

2019

... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...

An overview of blockchain technology:architecture,consensus,and future trends

1

2017

... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...

HotStuff:BFT consensus in the lens of blockchain

1

2019

... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...

Libra critique towards global decentralized financial system

1

2019

... BFT协议有较长的发展史,在区块链研究中被赋予了新的活力.SCP[42]和Ripple[43]基于联邦拜占庭共识[44]——存在交集的多池(确定规模的联邦)共识,分别允许节点自主选择或与指定的节点构成共识联邦,通过联邦交集达成全网共识.Tendermint[45]使用Gossip通信协议基本实现异步拜占庭共识,不仅简化了流程而且提高了可用性.HotStuff[46]将BFT与链式结构数据相结合,使主节点能够以实际网络时延及 O(n)通信复杂度推动协议达成一致.LibraBFT[47]在HotStuff的基础上加入奖惩机制及节点替换机制,从而优化了性能. ...

Proof of activity:extending bitcoin’s proof of work via proof of stake

1

... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...

Bitcoin meets strong consistency

1

... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...

Enhancing bitcoin security and performance with strong consistency via collective signing

1

2016

... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...

Casper the friendly finality gadget

1

... Hybrid 类协议是研究趋势之一.PoA[48]利用PoW产生空区块头,利用PoS决定由哪些节点进行记账和背书,其奖励由背书节点和出块节点共享.PeerCensus[49]由节点团体进行拜占庭协议实现共识,而节点必须基于比特币网络,通过 PoW 产出区块后才能获得投票权力.ByzCoin[50]利用PoW的算力特性构建动态成员关系,并引入联合签名方案来减小PBFT的轮次通信开销,提高交易吞吐量,降低确认时延.Casper[51]则通过PoS的股份决定节点构成团体并进行BFT共识,且节点可投票数取决于股份. ...

Bitcoin and beyond:a technical survey on decentralized digital currencies

1

2016

... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...

Non-interactive proofs of proof-of-work

1

... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...

A secure sharding protocol for open blockchains

1

2016

... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...

OmniLedger:a secure,scale-out,decentralized ledger via sharding

1

2018

... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...

PolyShard:coded sharding achieves linearly scaling efficiency and security simultaneously

1

... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...

A survey on the scalability of blockchain systems

1

2019

... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...

Scalable funding of bitcoin micropayment channel networks

1

2017

... 侧链(side-chain)在比特币主链外构建新的分类资产链,并使比特币和其他分类资产在多个区块链之间转移,从而分散了单一链的负荷.Tschorsch等[52]利用Two-way Peg机制实现交互式跨链资产转换,防止该过程中出现双花.Kiayias 等[53]利用NIPoPoW机制实现非交互式的跨链工作证明,并降低了跨链带来的区块冗余.分片(sharding)是指不同节点子集处理区块链的不同部分,从而减少每个节点的负载.ELASTICO[54]将交易集划分为不同分片,每个分片由不同的节点集合进行并行验证.OmniLedger[55]在前者的基础上优化节点随机选择及跨切片事务提交协议,从而提高了切片共识的安全性与正确性.区别于 OmniLedger,PolyShard[56]利用拉格朗日多项式编码分片为分片交互过程加入计算冗余,同时实现了可扩展性优化与安全保障.上述研究可视为链上处理模型在加密货币场景下的可扩展性优化方案.实际上,链下处理模型本身就是一种扩展性优化思路,闪电网络[57]通过状态通道对交易最终结果进行链上确认,从而在交易过程中实现高频次的链外支付.Plasma[58]在链下对区块链进行树形分支拓展,树形分支中的父节点完成子节点业务的确认,直到根节点与区块链进行最终确认. ...

Making smart contracts smarter

1

2016

... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...

Vandal:a scalable security analysis framework for smart contracts

1

2018

... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...

ContractFuzzer:fuzzing smart contracts for vulnerability detection

1

2018

... 一方面,沙盒环境承载了区块链节点运行条件,针对虚拟机展开的攻击更为直接;另一方面,智能合约直接对账本进行操作,其漏洞更易影响业务运行,因此控制层的安全防护研究成为热点.Luu等[59]分析了运行于EVM中的智能合约安全性,指出底层平台的分布式语义差异带来的安全问题.Brent 等[60]提出智能合约安全分析框架 Vandal,将EVM 字节码转换为语义逻辑关,为分析合约安全漏洞提供便利.Jiang 等[61]预先定义用于安全漏洞的特征,然后模拟执行大规模交易,通过分析日志中的合约行为实现漏洞检测. ...

Decentralized user-centric access control using pubsub over blockchain

1

2017

... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...

Pseudonym management through blockchain:cost-efficient privacy preservation on intelligent transportation systems

1

2019

... 智慧城市是指利用 ICT 优化公共资源利用效果、提高居民生活质量、丰富设施信息化能力的研究领域,该领域包括个人信息管理、智慧医疗、智慧交通、供应链管理等具体场景.智慧城市强调居民、设施等各类数据的采集、分析与使能,数据可靠性、管理透明化、共享可激励等需求为智慧城市带来了许多技术挑战.区块链去中心化的交互方式避免了单点故障、提升管理公平性,公开透明的账本保证数据可靠及可追溯性,多种匿名机制利于居民隐私的保护,因此区块链有利于问题的解决.Hashemi等[62]将区块链用于权限数据存储,构建去中心化的个人数据接入控制模型;Bao等[63]利用区块链高效认证和管理用户标识,保护车主的身份、位置、车辆信息等个人数据. ...

Hosting virtual IoT resources on edge-hosts with blockchain

1

2016

... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...

Blockchain based distributed control system for edge computing

1

2017

... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...

Integration of fog computing and blockchain technology using the plasma framework

1

2019

... 边缘计算是一种将计算、存储、网络资源从云平台迁移到网络边缘的分布式信息服务架构,试图将传统移动通信网、互联网和物联网等业务进行深度融合,减少业务交付的端到端时延,提升用户体验.安全问题是边缘计算面临的一大技术挑战,一方面,边缘计算的层次结构中利用大量异构终端设备提供用户服务,这些设备可能产生恶意行为;另一方面,服务迁移过程中的数据完整性和真实性需要得到保障.区块链在这种复杂的工作环境和开放的服务架构中能起到较大作用.首先,区块链能够在边缘计算底层松散的设备网络中构建不可篡改的账本,提供设备身份和服务数据验证的依据.其次,设备能在智能合约的帮助下实现高度自治,为边缘计算提供设备可信互操作基础.Samaniego等[64]提出了一种基于区块链的虚拟物联网资源迁移架构,通过区块链共享资源数据从而保障安全性.Stanciu[65]结合软件定义网络(SDN)、雾计算和区块链技术提出分布式安全云架构,解决雾节点中SDN控制器流表策略的安全分发问题.Ziegler等[66]基于 Plasma 框架提出雾计算场景下的区块链可扩展应用方案,提升雾计算网关的安全性. ...

Blockchained on-device federated learning

1

2018

... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...

Proof-of- learning:a blockchain consensus mechanism based on machine learning competitions

1

2019

... 人工智能是一类智能代理的研究,使机器感知环境/信息,然后进行正确的行为决策,正确是指达成人类预定的某些目标.人工智能的关键在于算法,而大部分机器学习和深度学习算法建立于体积庞大的数据集和中心化的训练模型之上,该方式易受攻击或恶意操作使数据遭到篡改,其后果为模型的不可信与算力的浪费.此外,数据采集过程中无法确保下游设备的安全性,无法保证数据来源的真实性与完整性,其后果将在自动驾驶等场景中被放大.区块链不可篡改的特性可以实现感知和训练过程的可信.另外,去中心化和合约自治特性为人工智能训练工作的分解和下放奠定了基础,保障安全的基础上提高计算效率.Kim等[67]利用区块链验证联合学习框架下的分发模型的完整性,并根据计算成本提供相应的激励,优化整体学习效果.Bravo-Marquez 等[68]提出共识机制“学习证明”以减轻PoX类共识的计算浪费,构建公共可验证的学习模型和实验数据库. ...

基于命名数据网络的区块链信息传输机制

1

2018

... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...

基于命名数据网络的区块链信息传输机制

1

2018

... 网络层主要缺陷在于安全性,可拓展性则有待优化.如何防御以 BGP 劫持为代表的网络攻击将成为区块链底层网络的安全研究方向[19].信息中心网络将重塑区块链基础传输网络,通过请求聚合和数据缓存减少网内冗余流量并加速通信传输[69].相比于数据层和共识层,区块链网络的关注度较低,但却是影响安全性、可拓展性的基本因素. ...

/

期刊网站版权所有 © 2021 《通信学报》编辑部

地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层   邮编:100079

电话:010-53878169、53859522、53878236   电子邮件:xuebao@ptpress.com.cn; txxb@bjxintong.com.cn

期刊网站版权所有 © 2021 《通信学报》编辑部

地址:北京市丰台区东铁匠营街道顺八条1号院B座“北阳晨光大厦”2层

邮编:100079   电话:010-53878169、53859522、53878236

电子邮件:txxb@bjxintong.com.cn

工业和信息化部中央网信办印发《关于加快推动区块链技术应用和产业发展的指导意见》_中央网络安全和信息化委员会办公室

工业和信息化部中央网信办印发《关于加快推动区块链技术应用和产业发展的指导意见》_中央网络安全和信息化委员会办公室

设为首页加入收藏手机版繁体

搜索

首 页

时政要闻

网信政务

互动服务

热点专题

当前位置:首页>正文

首页

时政要闻

网信政务

互动服务

热点专题

工业和信息化部 中央网信办印发《关于加快推动区块链技术应用和产业发展的指导意见》

2021年06月07日 21:10

来源:

“工信微报”微信公众号

【打印】【纠错】

导读工业和信息化部、中央网络安全和信息化委员会办公室近日联合发布《关于加快推动区块链技术应用和产业发展的指导意见》。明确到2025年,区块链产业综合实力达到世界先进水平,产业初具规模。区块链应用渗透到经济社会多个领域,在产品溯源、数据流通、供应链管理等领域培育一批知名产品,形成场景化示范应用。培育3~5家具有国际竞争力的骨干企业和一批创新引领型企业,打造3~5个区块链产业发展集聚区。区块链标准体系初步建立。形成支撑产业发展的专业人才队伍,区块链产业生态基本完善。区块链有效支撑制造强国、网络强国、数字中国战略,为推进国家治理体系和治理能力现代化发挥重要作用。到2030年,区块链产业综合实力持续提升,产业规模进一步壮大。区块链与互联网、大数据、人工智能等新一代信息技术深度融合,在各领域实现普遍应用,培育形成若干具有国际领先水平的企业和产业集群,产业生态体系趋于完善。区块链成为建设制造强国和网络强国,发展数字经济,实现国家治理体系和治理能力现代化的重要支撑。关于加快推动区块链技术应用和产业发展的指导意见工信部联信发﹝2021﹞62号各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、网信办:区块链是新一代信息技术的重要组成部分,是分布式网络、加密技术、智能合约等多种技术集成的新型数据库软件,通过数据透明、不易篡改、可追溯,有望解决网络空间的信任和安全问题,推动互联网从传递信息向传递价值变革,重构信息产业体系。为贯彻落实习近平总书记在中央政治局第十八次集体学习时的重要讲话精神,发挥区块链在产业变革中的重要作用,促进区块链和经济社会深度融合,加快推动区块链技术应用和产业发展,提出以下意见。一、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,深入贯彻落实党的十九大和十九届二中、三中、四中、五中全会精神,立足新发展阶段、贯彻新发展理念、构建新发展格局,围绕制造强国和网络强国战略部署,以培育具有国际竞争力的产品和企业为目标,以深化实体经济和公共服务领域融合应用为路径,加强技术攻关,夯实产业基础,壮大产业主体,培育良好生态,实现产业基础高级化和产业链现代化。推动区块链和互联网、大数据、人工智能等新一代信息技术融合发展,建设先进的区块链产业体系。(二)基本原则应用牵引。发挥市场优势,以应用需求为导向,积极拓展应用场景,推进区块链在重点行业、领域的应用,以规模化的应用带动技术产品迭代升级和产业生态的持续完善。创新驱动。坚持把区块链作为核心技术自主创新的重要突破口,明确主攻方向,加大投入力度,推动协同攻关,提升创新能力;坚持补短板和锻长板并重,推动产业加速向价值链中高端迈进。生态培育。充分发挥企业在区块链发展中的主体作用,加快培育具有国际竞争力的产品和企业,构建先进产业链,打造多方共赢的产业体系。多方协同。推动整合产学研用金各方力量,促进资源要素快捷有效配置。加强政府、企业、高校、研究机构的协同互动,探索合作共赢新模式。安全有序。坚持发展与安全并重,准确把握区块链技术产业发展规律,加强政策统筹和标准引导,强化安全技术保障能力建设,实现区块链产业科学发展。(三)发展目标到2025年,区块链产业综合实力达到世界先进水平,产业初具规模。区块链应用渗透到经济社会多个领域,在产品溯源、数据流通、供应链管理等领域培育一批知名产品,形成场景化示范应用。培育3~5家具有国际竞争力的骨干企业和一批创新引领型企业,打造3~5个区块链产业发展集聚区。区块链标准体系初步建立。形成支撑产业发展的专业人才队伍,区块链产业生态基本完善。区块链有效支撑制造强国、网络强国、数字中国战略,为推进国家治理体系和治理能力现代化发挥重要作用。到2030年,区块链产业综合实力持续提升,产业规模进一步壮大。区块链与互联网、大数据、人工智能等新一代信息技术深度融合,在各领域实现普遍应用,培育形成若干具有国际领先水平的企业和产业集群,产业生态体系趋于完善。区块链成为建设制造强国和网络强国,发展数字经济,实现国家治理体系和治理能力现代化的重要支撑。二、重点任务(一)赋能实体经济1.深化融合应用。发挥区块链在优化业务流程、降低运营成本、建设可信体系等方面的作用,培育新模式、新业态、新产业,支撑数字化转型和产业高质量发展。2.供应链管理。推动企业建设基于区块链的供应链管理平台,融合物流、信息流、资金流,提升供应链效率,降低企业经营风险和成本。通过智能合约等技术构建新型协作生产体系和产能共享平台,提高供应链协同水平。3.产品溯源。在食品医药、关键零部件、装备制造等领域,用区块链建立覆盖原料商、生产商、检测机构、用户等各方的产品溯源体系,加快产品数据可视化、流转过程透明化,实现全生命周期的追踪溯源,提升质量管理和服务水平。4.数据共享。利用区块链打破数据孤岛,实现数据采集、共享、分析过程的可追溯,推动数据共享和增值应用,促进数字经济模式创新。利用区块链建设涵盖多方的信用数据平台,创新社会诚信体系建设。(二)提升公共服务1.推动应用创新。推动区块链技术应用于数字身份、数据存证、城市治理等公共服务领域,支撑公共服务透明化、平等化、精准化,提升人民群众生活质量。2.政务服务。建立基于区块链技术的政务数据共享平台,促进政务数据跨部门、跨区域的共同维护和利用,在教育就业、医疗健康和公益救助等公共服务领域开展应用,促进业务协同办理,深化“一网通办”改革,为人民群众带来更好的政务服务体验。3.存证取证。利用区块链建立数字化可信证明,在司法存证、不动产登记、行政执法等领域建立新型存证取证机制。发挥区块链在版权保护领域的优势,完善数字版权的确权、授权和维权管理。4.智慧城市。利用区块链促进城市间在信息、资金、人才、征信等方面的互联互通和生产要素的有序流动。深化区块链在信息基础设施建设领域的应用,实现跨部门、跨行业的集约部署和共建共享,支撑智慧城市建设。(三)夯实产业基础1.坚持标准引领。推动区块链标准化组织建设,建立区块链标准体系。加快重点和急需标准制定,鼓励制定团体标准,深入开展标准宣贯推广,推动标准落地实施。积极参加区块链全球标准化活动和国际标准制定。2.构建底层平台。在分布式计算与存储、密码算法、共识机制、智能合约等重点领域加强技术攻关,构建区块链底层平台。支持利用传感器、可信网络、软硬件结合等技术加强链上链下数据协同。推动区块链与其他新一代信息技术融合,打造安全可控、跨链兼容的区块链基础设施。3.培育质量品牌。鼓励区块链企业加强质量管理,推广先进质量工程技术和方法,提高代码质量和开发效率。发展第三方质量评测服务,构建区块链产品和服务质量保障体系。引导企业主动贯标,开展质量品牌建设活动。4.强化网络安全。加强区块链基础设施和服务安全防护能力建设,常态化开展区块链技术对重点领域安全风险的评估分析。引导企业加强行业自律,建立风险防控机制和技术防范措施,落实安全主体责任。5.保护知识产权。加强区块链知识产权管理,培育一批高价值专利、商标、软件著作权,形成具有竞争力的知识产权体系。鼓励企业探索通过区块链专利池、知识产权联盟等模式,建立知识产权共同保护机制。(四)打造现代产业链1.研发区块链“名品”。整合产学研用专业力量,开展区块链产品研发,着力提升产品创新水平。面向防伪溯源、数据共享、供应链管理、存证取证等领域,建设一批行业级联盟链,加大应用推广力度,打造一批技术先进、带动效应强的区块链“名品”。2.培育区块链“名企”。统筹政策、市场、资本等资源,培育一批具有国际竞争力的区块链“名企”,发挥示范引领作用。完善创新创业环境,培育孵化区块链初创企业;鼓励在细分领域深耕,走专业化发展道路,打造一批独角兽企业。引导大企业开放资源,为中小企业提供基础设施,构建多方协作、互利共赢的产业生态。3.创建区块链“名园”。鼓励地方结合资源禀赋,突出区域特色和优势,按照“监管沙盒”理念打造区块链发展先导区。支持基础条件好的园区建设区块链产业“名园”,优化政策、人才、应用等产业要素配置,通过开放应用场景等方式,支持区块链企业集聚发展。4.建立开源生态。加快建设区块链开源社区,围绕底层平台、应用开发框架、测试工具等,培育一批高质量开源项目。完善区块链开源推进机制,广泛汇聚开发者和用户资源,大力推广成熟的开源产品和应用解决方案,打造良性互动的开源社区新生态。5.完善产业链条。坚持补短板和锻长板并重,开展强链补链,构建现代化的产业链。针对薄弱环节,组织上下游企业协同攻关,夯实产业基础;建立先进的产业链管理体系,增强产业链韧性。(五)促进融通发展1.推进“区块链+工业互联网”。推动区块链与标识解析融合创新,构建基于标识解析的区块链基础设施,提升“平台+区块链”技术融合应用能力,打造基于区块链技术的工业互联网新模式、新业态。2.推进“区块链+大数据”。加快建设基于区块链的认证可溯大数据服务平台,促进数据合规有序的确权、共享和流动,充分释放数据资源价值。发展基于区块链的数据管理、分析应用等,提升大数据管理和应用水平。3.推进“区块链+云计算”。基于云计算构建区块链应用开发、测试验证和运行维护环境,为区块链应用提供灵活、易用、可扩展的支撑,降低区块链应用开发门槛。4.推进“区块链+人工智能”。发展基于区块链的人工智能训练、算法共享等技术和方法,推动分布式人工智能模式发展。探索利用人工智能技术提升区块链运行效率和节点间协作的智能化水平。三、保障措施(一)积极推进应用试点。支持具有一定产业基础的地方,面向实体经济和民生服务等重点领域,选择成熟的应用场景,遴选一批推广能力强的单位开展区块链应用试点,形成一批应用效果好的区块链底层平台、产品和服务。(二)加大政策支持力度。依托国家产业发展工程,支持区块链产业发展。通过组织区块链大赛等方式,丰富行业应用。支持符合条件的区块链企业享受软件税收优惠政策。探索利用首版次保险补偿、政府采购等政策,促进区块链研发成果的规模化应用。(三)引导地方加快探索。鼓励地方立足实际,研究制定支持区块链产业发展的政策措施,从用地、投融资、人才等方面强化产业发展的要素保障,建立区块链产品库和企业库。支持区块链发展先导区创建“中国软件名园”。(四)构建公共服务体系。支持专业服务机构发展区块链培训、测试认证、投融资等服务,完善产业公共服务体系。加强创业创新载体建设,加快对各类创新型区块链企业的孵化,支持中小企业成长。(五)加强产业人才培养。依托“新工科”和特色化示范性软件学院建设,支持高校设置区块链专业课程,开展区块链专业教育。通过建设人才实训基地等方式,加强区块链职业技术教育。培育产业领军型人才和高水平创新团队,形成一批区块链领域的“名人”。(六)深化国际交流合作。围绕“一带一路”战略部署,建设区块链国际合作交流平台,在技术标准、开源社区、人才培养等领域加强区块链国际合作。鼓励企业拓展国际交流合作渠道,提升国际化发展水平和层次。工业和信息化部中央网络安全和信息化委员会办公室2021年5月27日

关闭

中央网络安全和信息化委员会办公室 中华人民共和国国家互联网信息办公室 © 版权所有 联系我们

承办:国家互联网应急中心 技术支持:长安通信科技有限责任公司 京ICP备14042428号 京公网安备11040102700108号

学习强国

◆ ◆

微信

◆ ◆

返回顶部

中央网络安全和信息化委员会办公室

中华人民共和国国家互联网信息办公室 © 版权所有

承办:国家互联网应急中心

技术支持:长安通信科技有限责任公司

京ICP备14042428号

京公网安备11040102700108号

PC版

Produced By CMS 网站群内容管理系统 publishdate:2024/01/05 22:23:48